More is Different: Modern Computational Modeling for Heterogeneous Catalysis

dc.contributor
Universitat Rovira i Virgili. Departament de Química Analítica i Química Orgànica
dc.contributor.author
García Carrillo, Sergio Pablo
dc.date.accessioned
2022-07-20T12:05:25Z
dc.date.available
2022-07-20T12:05:25Z
dc.date.issued
2022-07-11
dc.identifier.uri
http://hdl.handle.net/10803/674854
dc.description.abstract
La combinació d'observacions experimentals i estudis de la Density Functional Theory (DFT) és un dels pilars de la investigació química moderna. Atès que permeten recopilar informació física addicional d'un sistema químic, difícilment accessible a través de l'entorn experimental, aquests estudis es fan servir àmpliament per modelar i predir el comportament d'una gran varietat de compostos químics en entorns únics. A la catàlisi heterogènia, els models DFT s'utilitzen habitualment per avaluar la interacció entre els compostos moleculars i els catalitzadors, vinculant aquestes interpretacions amb els resultats experimentals. Tanmateix, l'alta complexitat trobada tant als escenaris catalítics com a la reactivitat, implica la necessitat de metodologies sofisticades que requereixen automatització, emmagatzematge i anàlisi per estudiar correctament aquests sistemes. Aquest treball presenta el desenvolupament i la combinació de múltiples metodologies per avaluar correctament la complexitat d'aquests sistemes químics. A més, aquest treball mostra com s'han utilitzat les tècniques proporcionades per estudiar noves configuracions catalítiques d'interès acadèmic i industrial.
en_US
dc.description.abstract
La combinación de observaciones experimentales y estudios de la Density Functional Theory (DFT) es uno de los pilares de la investigación química moderna. Dado que permiten recopilar información física adicional de un sistema químico, difícilmente accesible a través del entorno experimental, estos estudios se emplean ampliamente para modelar y predecir el comportamiento de una gran variedad de compuestos químicos en entornos únicos. En la catálisis heterogénea, los modelos DFT se emplean habitualmente para evaluar la interacción entre los compuestos moleculares y los catalizadores, vinculando estas interpretaciones con los resultados experimentales. Sin embargo, la alta complejidad encontrada tanto en los escenarios catalíticos como en la reactividad, implica la necesidad de metodologías sofisticadas que requieren de automatización, almacenamiento y análisis para estudiar correctamente estos sistemas. Este trabajo presenta el desarrollo y la combinación de múltiples metodologías con el objetivo de evaluar correctamente la complejidad de estos sistemas químicos. Además, este trabajo muestra cómo las técnicas proporcionadas se han utilizado para estudiar nuevas configuraciones catalíticas de interés académico e industrial.
en_US
dc.description.abstract
The combination of Experimental observations and Density Functional Theory studies is one of the pillars of modern chemical research. As they enable the collection of additional physical information of a chemical system, hardly accessible via the experimental setting, Density Functional Theory studies are widely employed to model and predict the behavior of a diverse variety of chemical compounds under unique environments. Particularly, in heterogeneous catalysis, Density Functional Theory models are commonly employed to evaluate the interaction between molecular compounds and catalysts, lately linking these interpretations with experimental results. However, high complexity found in both, catalytic settings and reactivity, implies the need of sophisticated methodologies involving automation, storage and analysis to correctly study these systems. Here, I present the development and combination of multiple methodologies, aiming at correctly asses complexity. Also, this work shows how the provided techniques have been actively used to study novel catalytic settings of academic and industrial interest.
en_US
dc.format.extent
277 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Rovira i Virgili
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Catàlisi heterogènia
en_US
dc.subject
Aprenentatge automàtic
en_US
dc.subject
Automatització
en_US
dc.subject
Catálisis heterogénea
en_US
dc.subject
Aprendizaje automático
en_US
dc.subject
Automatización
en_US
dc.subject
Heterogeneous Catalysis
en_US
dc.subject
Machine Learning
en_US
dc.subject
Automation
en_US
dc.subject.other
Ciències
en_US
dc.title
More is Different: Modern Computational Modeling for Heterogeneous Catalysis
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
en_US
dc.subject.udc
519.1
en_US
dc.subject.udc
54
en_US
dc.subject.udc
544
en_US
dc.contributor.director
López Alonso, Núria
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documentos

TESI Sergio Pablo García Carrillo.pdf

89.07Mb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)