Use of advanced analytics for health estimation and failure prediction in wind turbines

dc.contributor
Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.contributor.author
Beretta, Mattia
dc.date.accessioned
2022-09-16T09:11:38Z
dc.date.available
2022-09-16T09:11:38Z
dc.date.issued
2022-07-21
dc.identifier.uri
http://hdl.handle.net/10803/675333
dc.description
Tesi en modalitat de tesi per compendi
dc.description.abstract
The energy sector has undergone drastic changes and critical revolutions in the last few decades. Renewable energy sources have grown significantly, now representing a sizeable share of the energy production mix. Wind energy has seen increasing rate of adoptions, being one of the more convenient and sustainable mean of producing energy. Research and innovation have helped greatly in driving down production and operation costs of wind energy, yet important challenges still remain open. This thesis addresses predictive maintenance and monitoring of wind turbines, aiming to present predictive frameworks designed with the necessities of the industry in mind. More concretely: interpretability, scalability, modularity and reliability of the predictions are the objectives —together with limited data requirements— of this project. Of all the available data at the disposal of wind turbine operators, SCADA is the principal source of information utilized in this research, due to its wide availability and low cost. Ensemble models played an important role in the development of the presented predictive frameworks thanks to their modular nature which allows to combine very diverse algorithms and data types. Important insights gained from these experiments are the beneficial effect of combining multiple and diverse sources of data —for example SCADA and alarms logs—, the easiness of combining different algorithms and indicators, and the noticeable gain in predicting performance that it can provide. Finally, given the central role that SCADA data plays in this thesis, but also in the wind energy industry, a detailed analysis of the limitations and shortcomings of SCADA data is presented. In particular, the ef- fect of data aggregation —a common practice in the wind industry— is determined developing a methodological framework that has been used to study high–frequency SCADA data. This lead to the conclusion that typical aggregation periods, i.e. 5–10 minutes that are the standard in wind energy industry are not able to capture and maintain the information content of fast–changing signals, such as wind and electrical measurements.
dc.description.abstract
El sector energètic ha experimentat importants canvis i revolucions en les últimes dècades. Les fonts d’energia renovables han crescut significativament, i ara representen una part important en el conjunt de generació. L’energia eòlica ha augmentat significativament, convertint-se en una de les millors alternatives per produir energia verda. La recerca i la innovació ha ajudat a reduir considerablement els costos de producció i operació de l’energia eòlica, però encara hi ha oberts reptes importants. Aquesta tesi aborda el manteniment predictiu i el seguiment d’aerogeneradors, amb l’objectiu de presentar solucions d’algoritmes de predicció dissenyats tenint en compte les necessitats de la indústria. Més concretament conceptes com, la interpretabilitat, escalabilitat, modularitat i fiabilitat de les prediccions ho són els objectius, juntament amb els requisits limitats per les de dades disponibles d’aquest projecte. De totes les dades disponibles a disposició dels operadors d’aerogeneradors, les dades del sistema SCADA són la principal font d’informació utilitzada en aquest projecte, per la seva àmplia disponibilitat i baix cost. En el present treball, els models de conjunt tenen un paper important en el desenvolupament dels marcs predictius presentats gràcies al seu caràcter modular que permet l’ús d’algoritmes i tipus de dades molt diversos. Resultats importants obtinguts d’aquests experiments són l’efecte beneficiós de combinar múltiples i diverses fonts de dades, per exemple, SCADA i dades d’alarmes, la facilitat de combinar diferents algorismes i indicadors i el notable guany en predir el rendiment que es pot oferir. Finalment, donat el paper central que SCADA l’anàlisi de dades juga en aquesta tesi, però també en la indústria de l’energia eòlica, una anàlisi detallada de la es presenten les limitacions i les mancances de les dades SCADA. En particular es va estudiar l’efecte de l’agregació de dades -una pràctica habitual en la indústria eòlica-. Dins d’aquest treball es proposa un marc metodològic que s’ha utilitzat per estudiar dades SCADA d’alta freqüència. Això va portar a la conclusió que els períodes d’agregació típics, de 5 a 10 minuts que són l’estàndard a la indústria de l’energia eòlica, no són capaços de capturar i mantenir el contingut d’informació de senyals que canvien ràpidament, com ara mesures eòliques i elèctriques
dc.format.extent
151 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-sa/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Wind energy
dc.subject
Predictive maintenance
dc.subject
Machine learning
dc.subject
Deep learning
dc.subject
Ensemble learning
dc.subject
SCADA data limitations
dc.subject.other
Àrees temàtiques de la UPC::Enginyeria mecànica
dc.title
Use of advanced analytics for health estimation and failure prediction in wind turbines
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
517
dc.subject.udc
621
dc.contributor.director
Cusidó Roura, Jordi
dc.contributor.codirector
Cárdenas Araújo, Juan José
dc.embargo.terms
cap
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.doi
https://dx.doi.org/10.5821/dissertation-2117-373393
dc.description.degree
Enginyeria ambiental
dc.description.degree
DOCTORAT EN ENGINYERIA AMBIENTAL (Pla 2012)


Documents

TMB1de1.pdf

14.32Mb PDF

This item appears in the following Collection(s)