From Dynamics to Structure of Complex Networks: Exploiting Heterogeneity in the Sakaguchi-Kuramoto Model

Author

Rosell Tarragó, Gemma

Director

Díaz Guilera, Albert

Tutor

Franzese, Giancarlo

Date of defense

2022-06-16

Pages

179 p.



Department/Institute

Universitat de Barcelona. Facultat de Física

Abstract

Most of the real-world complex systems are best described as complex networks and can be mathematically described as oscillatory systems, coupled with the neighbours through the connections of the network. The flashing of fireflies, the neuronal brain signals or the energy flow through the power grid are some examples. Yoshiki Kuramoto came up with a tractable mathematical model that could capture the phenomenology of collective synchronization by suggesting that oscillators were coupled by a sinusoidal function of their phase differences. Later, Yoshiki Kuramoto together with Hidetsugu Sakaguchi presented a generalization of the previous limit-cycle set of oscillators Kuramoto’s model which incorporated a constant phase lag between oscillators. Subsequent studies of the model included the network structure within the model together with the global shift. For a wide range of the phase lag values, the system becomes synchronized to a resulting frequency, i.e., the dynamics reaches a stationary state. In the original work of Kuramoto and Sakaguchi and in most of the consequent later studies, a uniform distribution of phase lag parameters is customarily assumed. However, the intrinsic properties of nodes – that assuredly represent the constituents of real systems – do not need be identical but distributed non-homogeneously among the population. This thesis contributes to the understanding of the Kuramoto-Sakaguchi model with a generalization for nonhomogeneous phase lag parameter distribution. Considering different scenarios concerning the distribution of the frustration parameter among the oscillators represents a major step towards the extension of the original model and provides significant novel insights into the structure and function of the considered network. The first setting that the present thesis considers consists in perturbing the stationary state of the system by introducing a non-zero phase lag shift into the dynamics of a single node. The aim of this work is to sort the nodes by their potential effect on the whole network when a change on their individual dynamics spreads over the entire oscillatory system by disrupting the otherwise synchronized state. In particular, we define functionability, a novel centrality measure that addresses the question of which are the nodes that, when individually perturbed, are best able to move the system away from the fully synchronized state. This issue may be relevant for the identification of critical nodes that are either beneficial – by enabling access to a broader spectrum of states – or harmful – by destroying the overall synchronization. The second scenario that the present thesis addresses considers a more general configuration in which the phase lag parameter is an intrinsic property of each node, not necessarily zero, and hence exploring the potential heterogeneity of the frustration among oscillators. We obtain the analytical solution of frustration parameters so as to achieve any phase configuration, by linearizing the most general model. We also address the fact that the question ’among all the possible solutions, which is the one that makes the system achieve a particular phase configuration with the minimum required cost?’ is of particular relevance when we consider the plausible real nature of the system. Finally, the homogenous distribution of phase lag parameters is revisited in the last scenario. As studied in the literature, a certain degree of symmetry is an attribute of real-world networks. Nevertheless, beyond structural or topological symmetry, one should consider the fact that real- world networks are exposed to fluctuations or errors, as well as mistaken insertions or removals. In the present thesis, we provide an alternative notion to approximate symmetries, which we call ‘Quasi-Symmetries’ and are defined such that they remain free to impose any invariance of a particular network property and are obtained from the stationary state of the Kuramoto-Sakaguchi model with a homogeneous phase lag distribution. A first contribution is exploring the distributions of structural similarity among all pairs of nodes. Secondly, we define the ‘dual network’, a weighted network –and its corresponding binarized counterpart– that effectively encloses all the information of quasi-symmetries in the original one.


La major part dels sistemes complexos presents en la natura i la societat es poden descriure com a xarxes complexes. Molts d’aquests sistemes es poden modelitzar matemàticament com un sistema oscil·latori, on les unitats queden acoblades amb els components veïns a través de les connexions de la xarxa. Yoshiki Kuramoto i Hidetsugu Sakaguchi van presentar la generalització del ben conegut model d’oscil·ladors de Kuramoto, on s’incorporava un terme de desfasament entre parelles d’oscil·ladors. Aquesta tesi contribueix en la comprensió d’aquest model, tot considerant una distribució no homogènia d’aquest paràmetre de desfasament o frustració. S’han considerat tres escenaris diferents, tots ells donant lloc a resultats que permeten una millor descripció de l’estructura i funció de la xarxa que s’està considerant. Una primera configuració consisteix en pertorbar l’estat estacionari tot introduint un desfasament en la dinàmica d’un node de manera aïllada. Seguidament, definim la funcionabilitat, una mesura de centralitat única que respon a la pregunta de, quins nodes, quan són pertorbats individualment, són més capaços d’allunyar el sistema de l’estat sincronitzat. Aquest fet podria suposar un comportament beneficiós o perjudicial per sistemes reals. El segon escenari considera la configuració més flexible, explorant la potencial heterogeneïtat dels paràmetres de frustració dels diferents nodes. Obtenim la solució analítica d’aquesta distribució per tal d’assolir qualsevol configuració de les fases dels oscil·ladors, a través de la linearització del model. També contestem a la pregunta: “de totes les possibles solucions, quina és la que implica un menor cost per tal d’assolir una configuració en particular?”. Finalment, en l’últim escenari, proporcionem una definició alternativa al concepte de simetria aproximada d’una xarxa, i que anomenem “Quasi simetries”. Aquestes són definides sense imposar invariàncies en les propietats del sistema, sinó que s’obtenen de l’estat estacionari del model de Kuramoto-Sakaguchi model, tot considerant una distribució homogènia dels paràmetres de frustració.

Keywords

Sistemes complexos; Sistemas complejos; Complex systems; Sincronització; Sincronización; Synchronization; Simetria (Física); Simetría (Física); Symmetry (Physics); Models matemàtics; Modelos matemáticos; Mathematical models

Subjects

538.9 - Condensed matter physics

Knowledge Area

Ciències Experimentals i Matemàtiques

Note

Programa de Doctorat en Física

Documents

GRT_PhD_THESIS.pdf

40.85Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/

This item appears in the following Collection(s)