Higher regularity of free boundaries in obstacle problems

dc.contributor
Universitat de Barcelona. Departament de Matemàtiques i Informàtica
dc.contributor.author
Kukuljan, Teo
dc.date.accessioned
2022-11-09T10:50:33Z
dc.date.available
2022-11-09T10:50:33Z
dc.date.issued
2022-10-07
dc.identifier.uri
http://hdl.handle.net/10803/675937
dc.description
Programa de Doctorat en Matemàtica i Informàtica
en_US
dc.description.abstract
In the thesis we consider higher regularity of the free boundaries in different variations of the obstacle problem, that is, when the Laplace operator b. is replaced with another elliptic or parabolic operator. In the fractional obstacle problem with drift (L = (-'6.)8 + b · v'), we prove that for constant b, and irrational s > ½ the free boundary is C00 near regular points as long as the obstacle is C00. To do so we establish higher order boundary Harnack inequalities for linear equations. This gives a bootstrap argument, as the normal of the free boundary can be expressed with quotients of derivatives of solution to the obstacle problem. Furthermore we establish the boundary Harnack estímate for linear parabolic operators (L = Ot - b.) in parabolic C1 and C1•°' domains and give a new proof of the higher order boundary Harnack estímate in ck,a domains. In the similar way as in the fractional obstacle problem with drift this implies that the free boundary in the parabolic obstacle problem is C00 near regular points. We also study the regularity of the free boundary in the parabolic fractional obstacle problem (L = Ot + (-b.)8) in the cases > ½- We are able to provea boundary Harnack estímate in C1•°' domains, which improves the regularity of the free boundary from C1•°' to C2•°'. Finally, we establish the full regularity theory for free boundaries in fully non-linear parabolic obstacle problem. Concretely we find the splitting of the free boundary into regular and singular points, we show that near regular points the free boundary is locally a graph of a C00 function, and that the singular points are '' rare" - they can be covered with a Lipschitz manifold of co-dimension 2, which is arbitrarily flat in space.
en_US
dc.format.extent
209 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Equacions diferencials parabòliques
en_US
dc.subject
Ecuaciones diferenciales parabólicas
en_US
dc.subject
Parabolic differential equations
en_US
dc.subject
Equacions diferencials el·líptiques
en_US
dc.subject
Ecuaciones diferenciales elípticas
en_US
dc.subject
Elliptic differential equations
en_US
dc.subject
Càlcul
en_US
dc.subject
Cálculo
en_US
dc.subject
Calculus
en_US
dc.subject.other
Ciències Experimentals i Matemàtiques
en_US
dc.title
Higher regularity of free boundaries in obstacle problems
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
51
en_US
dc.contributor.director
Ros, Xavier
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

TK_PhD-THESIS.pdf

1.639Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)