Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
(English) Gender bias is a dangerous form of social bias impacting an essential group of people. The effect of gender bias is propagated to our data, causing the accuracy of the predictions in models to be different depending on gender. In the deep learning era, our models are highly impacted by the training data transferring the negative biases in the data to the models. Natural Language Processing models encounter this amplification of bias in the data. Our thesis is devoted to studying the issue of gender bias in NLP applications from different points of view. To understand and manage the effect of bias amplification, evaluation and mitigation approaches have to be explored. The scientific society has exerted significant efforts in these two directions to enable proposing solutions to the problem. Our thesis is devoted to these two main directions; proposing evaluation schemes, whether as datasets or mechanisms, besides suggesting mitigation techniques. For evaluation, we proposed techniques for evaluating bias in contextualized embeddings and multilingual translation models. Besides, we presented benchmarks for evaluating bias for speech translation and multilingual machine translation models. For mitigation direction, we proposed different approaches in machine translation models by adding contextual text, contextual embeddings, or relaxing the architecture’s constraints. Our evaluation studies concluded that gender bias is encoded strongly in contextual embeddings representing professions and stereotypical nouns. We also unveiled that algorithms amplify the bias and that the system’s architecture impacts the behavior. For the evaluation purposes, we contributed to creating several benchmarks for the evaluation purpose; we introduced a benchmark that evaluates gender bias in speech translation systems. This research suggests that the current state of speech translation systems does not enable us to evaluate gender bias accurately because of the low quality of speech translation systems. Additionally, we proposed a toolkit for building multilingual balanced datasets for training and evaluating NMT models. These datasets are balanced within the gender occupation-wise. We found out that high-resource languages usually tend to predict more precise male translations. Our mitigation studies in NMT suggest that the nature of datasets and languages needs to be considered to apply the right approach. Mitigating bias can rely on adding contextual information. However, in other cases, we need to rethink the model and relax some influencing conditions to the bias that do not affect the general performance but reduce the effect of bias amplification.
(Español) El prejuicio de género es una forma peligrosa de sesgo social que afecta a un grupo esencial de personas. El efecto del prejuicio de género se propaga a nuestros datos, lo que hace quela precisión de las predicciones en los modelos sea diferente según el género. En la era del aprendizaje profundo, nuestros modelos se ven afectados por los datos de entrenamiento que transfieren los prejuicios de los datos a los modelos. Los modelos de procesamiento del lenguaje natural pueden además amplificar este sesgo en los datos. Para comprender el efecto de la amplificación del prejuicio de género, se deben explorar enfoques de evaluación y mitigación. La sociedad científica ha visto la importancía de estas dos direcciones para posibilitar la propuesta de soluciones al problema. Nuestra tesis está dedicada a estas dos direcciones principales; proponiendo esquemas de evaluación, ya sea como conjuntos de datos y mecanismos de evaluación, además de sugerir técnicas de mitigación. Para la evaluación, propusimos técnicas para evaluar el prejuicio en representaciones vectoriales contextualizadas y modelos de traducción multilingüe. Además, presentamos puntos de referencia para evaluar el prejuicio de la traducción de voz y los modelos de traducción automática multilingüe. Para la dirección de mitigación, propusimos diferentes enfoques en los modelos de traducción automática agregando texto contextual, incrustaciones contextuales o relajando las restricciones de la arquitectura. Nuestros estudios de evaluación concluyeron que el prejuicio de género está fuertemente codificado en representaciones vectoriales contextuales que representan profesiones y sustantivos estereotipados. También revelamos que los algoritmos amplifican el sesgo y que la arquitectura del sistema afecta el comportamiento. Para efectos de evaluación, contribuimos a la creación de varios datos de referencia para fines de evaluación; presentamos un conjunto de datos que evalúa el sesgo de género en los sistemas de traducción de voz. Esta investigación sugiere que el estado actual de los sistemas de traducción del habla no nos permite evaluar con precisión el sesgo de género debido a la baja calidad de los sistemas de traducción del habla. Además, propusimos un conjunto de herramientas para construir conjuntos de datos equilibrados multilingües para entrenar y evaluar modelos NMT. Estos conjuntos de datos están equilibrados dentro de la ocupación de género. Descubrimos que los idiomas con muchos recursos generalmente tienden a predecir traducciones masculinas más precisas. Nuestros estudios de mitigación en NMT sugieren que se debe considerar la naturaleza de los conjuntos de datos y los idiomas para aplicar el enfoque correcto. La mitigación del sesgo puede basarse en agregar información contextual. Sin embargo, en otros casos, necesitamos repensar el modelo y relajar algunas condiciones que influyen en el sesgo que no afectan el rendimiento general pero reducen el efecto de la amplificación del sesgo.
004 - Computer science; 8 - Linguistics. Literature
Àrees temàtiques de la UPC::Informàtica
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.