Cloud-based Indoor Positioning Platform for Context-adaptivity in GNSS-denied Scenarios

dc.contributor.author
Quezada Gaibor, Darwin
dc.date.accessioned
2023-04-25T07:43:35Z
dc.date.available
2023-04-25T07:43:35Z
dc.date.issued
2023-03-31
dc.identifier.uri
http://hdl.handle.net/10803/688141
dc.description
Doctorat internacional
ca
dc.description.abstract
The demand for positioning, localisation and navigation services is on the rise, largely owing to the fact that such services form an integral part of applications in areas such as agriculture, robotics, and eHealth. Depending on the field of application, these services must accomplish high levels of accuracy, flexibility, and integrability. This dissertation focuses on improving computing efficiency, data pre-processing, and software architecture for indoor positioning solutions without leaving aside position and location accuracy. The dissertation begins by presenting a systematic review of current cloud-based indoor positioning solutions. Secondly, we focus on the study of data optimisation techniques such as data cleansing and data augmentation. The third contribution suggests two algorithms to group similar fingerprints into clusters. The fourth contribution explores the use of Machine Learning (ML) models to enhance position estimation accuracy. Finally, this dissertation summarises the key findings in an open-source cloud platform for indoor positioning.
ca
dc.format.extent
212 p.
ca
dc.language.iso
eng
ca
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
ca
dc.rights.uri
http://creativecommons.org/licenses/by-sa/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Indoor Positioning
ca
dc.subject
Fingerprinting
ca
dc.subject
Cloud Computing
ca
dc.subject
Machine Learning
ca
dc.subject.other
Ciències
ca
dc.title
Cloud-based Indoor Positioning Platform for Context-adaptivity in GNSS-denied Scenarios
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
62
ca
dc.contributor.director
Huerta Guijarro, Joaquí­n
dc.contributor.director
Torres-Sospedra, Joaquín
dc.contributor.tutor
Huerta Guijarro, Joaquín
dc.embargo.terms
cap
ca
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.doi
http://dx.doi.org/10.6035/14124.2023.821275
ca


Documents

2023_Tesis_Quezada Gaibor_Darwin.pdf

9.193Mb PDF