From Compression of Wearable-based Data to Effortless Indoor Positoning

Author

Klus, Lucie

Director

Granell, Carlos ORCID

Codirector

Nurmi, Jari ORCID

Lohan, Elena Simona ORCID

Date of defense

2023-04-27

Pages

212 p.



Abstract

The dissertation focuses on boosting the energy efficiency of IoT and wearable devices by implementing lossy compression techniques onto sensor-based time-series data and into indoor localization paradigms. The thesis deals with lossy compression mechanisms that can be implemented for energy-e¿cient, delay-sensitive wearable data gathering, transfer, and storage. The novel DLTC compression method ensures optimal compression ratio and reconstruction error trade-off, with minimum complexity and delay. In the scope of indoor positioning, the proposed bit-level, feature-wise, and sample-wise reduction of the radio map supports accurate positioning while saving resources in data storage and transfer. The work implements a multi-dimensional compression of the radio map to boost the performance e¿ciency of the positioning system and proposes a cascade model to compensate for k-NN¿s drawback of computationally expensive prediction on voluminous datasets.

Keywords

Wearable-based data; Wearable Applications

Subjects

62 - Engineering

Knowledge Area

Ciències

Note

Cotutela: Universidad de defensa de la tesis doctoral Tampere University Doctorat Internacional

Documents

2023_Tesis_Klus_Lucie.pdf

2.851Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/