Modeling of proteins

Author

Alfonso Pérez, Gerardo

Director

Castillo Solsona, Raquel

Tutor

Castillo Solsona, Raquel

Date of defense

2023-11-10

Pages

198 p.



Department/Institute

Universitat Jaume I. Escola de Doctorat

Doctorate programs

Programa de Doctorat en Química Teòrica i Modelització Computacional

Abstract

In paper I the four proposed assumptions in the context of categorical variable mapping in protein classification problems: (1) translation, (2) permutation, (3) constant, and (4) eigenvalues were tested. The results suggest that these four assumptions are valid. In paper II the proposed approach is able to generate an accuracy, sensitivity and specify of classification forecasts of 97.69%, 95.02% and 98.26%, respectively, illustrating that a combination of DNA methylation with nonlinear methods such as artificial neural networks might be useful in the task of identifying patients with a carcinoma. In paper III it was shown that gene expression data can be successfully analyzed with machine learning techniques in order to differentiate healthy patients and patients with interstitial lung disease systemic sclerosis (ILD-SSc). In paper IV, following a machine learning approach, it was possible to identify a list of genes that appear to be related to inflammatory bowel disease

Keywords

Protein; 3D structure; Classification; Categorical Variables

Subjects

54 - Chemistry

Knowledge Area

Ciències

Note

Compendi d'articles

Documents

2023_Tesis_Alfonso Perez_Gerardo.pdf

13.19Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/

This item appears in the following Collection(s)