Exploiting Wireless Communications for Localization: Beyond Fingerprinting

Author

Bravenec, Tomáš ORCID

Director

Gould Carlson, Michael

Torres-Sospedra, Joaquín ORCID

Tutor

Gould Carlson, Michael

Date of defense

2023-12-18

Pages

158 p.



Abstract

The field of Location-based Services (LBS) has experienced significant growth over the past decade, driven by increasing interest in fitness tracking, robotics, and eHealth. This dissertation focuses on evaluating privacy measures in Indoor Positioning Systems (IPS), particularly in the context of ubiquitous Wi-Fi networks. It addresses non-cooperative user tracking through the exploitation of unencrypted Wi-Fi management frames, which contain enough information for device fingerprinting despite MAC address randomization. The research also explores an algorithm to estimate room occupancy based on passive Wi-Fi frame sniffing and Received Signal Strength Indicator (RSSI) measurements. Such room occupancy detection has implications for energy regulations in smart buildings. Furthermore, the thesis investigates methods to reduce computational requirements of machine learning and positioning algorithms through optimizing neural networks and employing interpolation techniques for IPS based on RSSI fingerprinting. The work contributes datasets, analysis scripts, and firmware to improve reproducibility and supports advancements in the LBS field.

Keywords

Machine learning; Indoor positioning; Privacy; Wi-Fi; 802.11; Data analysis

Subjects

62 - Engineering

Knowledge Area

Ciències

Note

Doctorat internacional

Documents

2023_Tesis_Bravenec_Tomás .pdf

10.41Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/