Degenerate invariant tori in KAM theory

Author

Pello García, Juan

Director

Haro, Àlex

Fontich, Ernest, 1955-

Tutor

Haro, Àlex

Date of defense

2023-11-22

Pages

265 p.



Department/Institute

Universitat de Barcelona. Facultat de Matemàtiques

Abstract

[eng] The thesis develops an incipient methodology to study bifurcations of invariant curves in one-dimensional and quasiperiodic discrete systems, based on translated curve theorems and KAM theory.The (extended) phase space is a bundle whose base is a torus of dimension 1, and the real-line is the fiber but both the methodology and the results can be easily adapted to higher dimensional tori (the dimension being the number of external frequencies). The systems themselves are maps of bundles over translations in the torus with d frequencies. over translations on the torus with d frequencies. The methodology involves KAM theory, bifurcation theory, and translated curve theorems (in the spirit of Moser, Rüßmann, Herman, Delshams and Ortega). In the project, rigorous results are obtained in a posteriori format on the existence of families of translated tori in the analytical framework, establishing a methodology to study the bifurcations of translated tori. The a posteriori format is suitable to develop rigorous numerical calculations. Complementarily, the algorithms derived from the iterative process associated with this methodology have been implemented on the computer.


[spa] La tesis desarrolla una incipiente metodología para estudiar bifurcaciones de curvas invariantes en sistemas discretos unidimensionales y cuasi periódicos, basada en teoremas de curva trasladada y teoría KAM. El espacio de fases (extendido) es un fibrado cuya base es un toro unidimensional, y la recta real es la fibra, pero tanto la metodología como los resultados se pueden adaptar fácilmente a toros de mayor dimensión (siendo la dimensión el número de frecuencias externas). La metodología involucra teoría KAM, teoría de bifurcaciones y teoremas de grafo trasladado (en el espíritu de Moser, Rüßmann, Herman, Delshams y Ortega). En el proyecto se obtienen resultados rigurosos en formato a posteriori sobre la existencia de familias de toros trasladados en el contexto analítico, estableciendo una metodología para estudiar las bifurcaciones de toros invariantes. El formato a posteriori es adecuado para el desarrollo de herramientas numéricas rigurosas, que, con las que complementariamente se han implementado algoritmos derivados del proceso iterativo asociado a esta metodología.

Keywords

Teoria de la bifurcació; Teoría de bifurcación; Bifurcation theory; Corbes; Curvas; Curves; Invariants; Invariantes; Dinàmica topològica; Dinámica topológica; Topological dynamics

Subjects

51 - Mathematics

Knowledge Area

Ciències Experimentals i Matemàtiques

Note

Programa de Doctorat en Matemàtiques i Informàtica

Documents

JPG_PhD_THESIS.pdf

44.00Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/

This item appears in the following Collection(s)