Multiresolution image segmentation based on camporend random fields: Application to image coding


Author

Marqués Acosta, Fernando

Director

Gasull Llampallas, Antoni

Date of defense

1992-11-22

ISBN

9788469133927

Legal Deposit

B.26662-2008



Department/Institute

Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions

Abstract

La segmentación de imágenes es una técnica que tiene como finalidad dividir una imagen en un conjunto de regiones, asignando a cada objeto en la escena una o varias regiones. Para obtener una segmentación correcta, cada una de las regiones debe cumplir con un criterio de homogeneidad impuesto a priori. Cuando se fija un criterio de homogeneidad, lo que implícitamente se esta haciendo es asumir un modelo matemático que caracteriza las regiones.<br/><br/>En esta tesis se introduce un nuevo tipo de modelo denominado modelo jerárquico, ya que tiene dos niveles diferentes sobrepuestos uno sobre el otro. El nivel inferior (o subyacente) modela la posición que ocupa cada una de las regiones dentro de la imagen; mientras que, por su parte, el nivel superior (u observable) esta compuesto por un conjunto de submodelos independientes (un submodelo por región) que caracterizan el comportamiento del interior de las regiones. Para el primero se usa un campo aleatorio Markoviano de orden dos que modelara los contornos de las regiones, mientras que para el segundo nivel se usa un modelo Gausiano.<br/><br/> En el trabajo se estudian los mejores potenciales que deben asignarse a los tipos de agrupaciones que permiten definir los contornos. Con todo ello la segmentación se realiza buscando la partición más probable (criterio MAP) para una realización concreta (imagen observable).<br/><br/>El proceso de búsqueda de la partición optima para imágenes del tamaño habitual seria prácticamente inviable desde un punto de vista de tiempo de cálculo. Para que se pueda realizar debe partirse de una estimación inicial suficientemente buena y de una algoritmo rápido de mejora como es una búsqueda local. Para ello se introduce la técnica de segmentación piramidal (multirresolucion). La pirámide se genera con filtrado Gausiano y diezmado. En el nivel mas alto de la pirámide, al tener pocos píxels, si que se puede encontrar la partición óptima.

Keywords

image coding; contour coding; mathematic morphology; image segmentation; chain code; markov random fields

Subjects

621.3 Electrical engineering

Documents

01_marques_portadaIndex.pdf

796.3Kb

02_marques_capitol1.pdf

2.232Mb

03_marques_capitol2.pdf

1.935Mb

04_marques_capitol3.pdf

3.464Mb

05_marques_capitol4.pdf

3.069Mb

06_marques_capitol5.pdf

5.003Mb

07_marques_capitol6.pdf

3.074Mb

08_marques_conclusions.pdf

912.3Kb

09_marques_referencies.pdf

637.6Kb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)