dc.contributor
Universitat de Barcelona. Facultat de Física
dc.contributor.author
López García, Alex
dc.date.accessioned
2024-05-30T09:11:19Z
dc.date.available
2024-05-30T09:11:19Z
dc.date.issued
2024-05-06
dc.identifier.uri
http://hdl.handle.net/10803/691167
dc.description
Programa de Doctorat en Nanociències
ca
dc.description.abstract
[eng] The work presented in this thesis book has been carried out during the period 2019-2022 within the Solar
Energy Materials and Systems (SEMS) group at the Institut de Recerca en Energia de Catalunya (IREC) located
in Sant Adrià del Besòs, Barcelona, Spain. The objective of this thesis was the synthesis and characterization
of UV-selective transparent photovoltaic devices focusing on the use of inorganic wide-bandgap oxide-based
materials and architectures, with the aim of obtaining high transparency and efficient TPV devices with a high
integration potential and with features such as low-cost, stability and earth-abundance.
For the consecution of results and development of this novel research field work jump-started from state-ofthe-
art device architectures for UV-selective devices, which focused on ZnO absorbers. Subsequently, it was
proposed to shift towards materials with a more appropriate bandgap that was best matched with the UV
spectral onset in the AM1.5G spectra. The material studied was Zn(O,S) which involved the partial anionic
substitution of oxygen by a chalcogen, sulfur in this case. After an initial phase of synthesis and
characterization of different compositions lying in the whole range (from oxygen-rich to sulfur-rich) as well as
a screening of different materials to work as carrier selective contacts, TPV devices were successfully
fabricated for the first time in literature. Device characterization suggested some device limitations that have
to be overcome in order to increase the performance of the TPV devices. The devices presented a record
efficiency of PCE=0.5% and an average visible transmittance (AVT) of 69%, improving on the state-of-the-art
pure oxide based approaches previously reported in scientific literature.
Afterwards, a different approach was exploited in order to obtain transparent devices. This approach relied in
the use of (lower) wide-bandgap materials, that lie in the visible range. To overcome opaqueness due to
unwanted absorption in the visible range the deposition of the thin films were engineered to be ultrathin,
having nanometric thickness below 30 nm. For this, a-Si:H nanometric films with a bandgap of 1.7 eV were
embedded in pure oxide-based architectures. Similarly to the first approach, the work relied on the
optimization of the deposition of ultrathin a-Si:H films and their optical characterization to assess their
feasibility as candidates for TPV absorbers, relying on spectrophotometry and photothermal deflection
spectroscopy. Different implementations of TPV devices were fabricated, yielding working devices that were
able to overcome the bottleneck of PCE=0.5% found so far in state-of-the art pure oxide based approaches. It
was shown that devices resulting from this approach presented the possibility of tuning the different
optoelectronic parameters by small adjustments of the thickness of the ultrathin absorbers. Thicker films (30
nm) resulted in devices with lower transparency and colour rendering index (CRI) while increasing the PCE of
the devices. Contrarily, using thinner films (8 nm) resulted in transparency values comparable to pure oxidebased
devices while having a comparatively lower efficiency when compared to the devices made with
absorbers of 30 nm. The best devices presented a PCE=2% with an AVT=35% for the devices using a 30 nm a-
Si:H absorber embedded in oxide charge transport layers (CTL).
Both approaches presented in the thesis were successful and the conclusions presented suggested that there
is still room for device optimization by improving the contact selectivity of the charge transport layers that
composed the devices.
ca
dc.description.abstract
[spa] El objetivo de esta tesis ha sido la síntesis y caracterización de dispositivos fotovoltaicos transparentes UVselectivos
centrándose en el uso de materiales y arquitecturas inorgánicas basadas en óxidos de banda ancha,
con el fin de obtener dispositivos TPV de alta transparencia y eficiencia con un alto potencial de integración y
con características como bajo coste, estabilidad y abundancia.
Para la consecución de los resultados se partió de las arquitecturas más avanzadas, que se centraban en
absorbedores de ZnO. Posteriormente, se propuso cambiar hacia materiales con un bandgap que se ajustara
mejor al inicio espectral UV. El material estudiado fue el Zn(O,S), que implicaba la sustitución aniónica parcial
del oxígeno por un calcógeno, azufre en este caso. Tras una fase inicial de síntesis y caracterización de
diferentes composiciones dentro de un amplio rango (desde ricas en oxígeno hasta ricas en azufre), así como
un cribado de diferentes materiales para trabajar como contactos selectivos de portadores, se fabricaron con
éxito dispositivos TPV por primera vez en la literatura. La caracterización de los dispositivos sugirió algunas
limitaciones que deben superarse para aumentar el rendimiento de los dispositivos TPV. Los dispositivos
presentaron una eficiencia récord de PCE=0.5% y una transmitancia visible ponderada del 69%, mejorando el
estado del arte de las aproximaciones basadas en óxidos . Posteriormente, se adoptó un enfoque diferente
para obtener dispositivos transparentes. Este enfoque se basaba en el uso de materiales (inferiores) de banda
ancha, que se encuentran en el rango visible. Para superar la opacidad debida a la absorción no deseada en el
rango visible, se diseñó el depósito de las películas finas para que fueran ultrafinas, con un grosor nanométrico
inferior a 30 nm. Se demostró que los dispositivos resultantes de este enfoque presentaban la posibilidad de
sintonizar los diferentes parámetros optoelectrónicos mediante pequeños ajustes del grosor de los
absorbedores ultrafinos. Ambos enfoques presentados en la tesis tuvieron éxito y las conclusiones
presentadas sugieren que todavía hay margen para la optimización del dispositivo mediante la mejora de la
selectividad de contacto de las capas de transporte de carga que componen los dispositivos.
ca
dc.format.extent
127 p.
ca
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
ca
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Cèl·lules fotovoltaiques
ca
dc.subject
Células fotovoltaicas
ca
dc.subject
Photovoltaic cells
ca
dc.subject
Pel·lícules fines
ca
dc.subject
Películas delgadas
ca
dc.subject
Radiació ultraviolada
ca
dc.subject
Radiación ultravioleta
ca
dc.subject
Ultraviolet radiation
ca
dc.subject
Compostos organozíncics
ca
dc.subject
Compuestos organocíncicos
ca
dc.subject
Organozinc compounds
ca
dc.subject.other
Ciències Experimentals i Matemàtiques
ca
dc.title
Synthesis and Characterization of UV-Selective Oxide-based Transparent Thin Film Solar Cells
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Pérez Rodríguez, Alejandro
dc.contributor.director
Puigdollers i González, Joaquim
dc.contributor.tutor
Pérez Rodríguez, Alejandro
dc.rights.accessLevel
info:eu-repo/semantics/openAccess