dc.contributor
Universitat de Barcelona. Facultat de Física
dc.contributor.author
Arazo Sánchez, Maria
dc.date.accessioned
2024-05-31T06:31:30Z
dc.date.available
2024-05-31T06:31:30Z
dc.date.issued
2024-05-16
dc.identifier.uri
http://hdl.handle.net/10803/691180
dc.description
Programa de doctorat en Física
ca
dc.description.abstract
[eng] Bose-Einstein condensation is a direct consequence of quantum statistical effects. It
occurs in ultradilute gases at very low temperatures: most atoms condense into the
lowest-energy state and behave as a single matter wave. In this thesis, we study Bose-
Einstein condensates (BECs) of dilute and weakly interacting atoms within the meanfield
framework and focus on two topics: anisotropic interactions and self-bound
states.
In ultracold dilute gases, the most common atom-atom interactions are short-range
and isotropic. However, the interactions can also be anisotropic, for instance, when
the gas is either formed of atoms with a large magnetic moment or subject to an
artificial gauge field, exhibiting dipolar and chiral interactions, respectively. The
interacting nature of the system gives rise to two possible solutions that do not require
external confinement: quantum droplets and solitons. Droplets emerge from the
balance between quantum fluctuations and the mean-field interactions, while solitons
are localized excitations sustained by the competition between the dispersion and
nonlinearity of the medium.
We begin the thesis by developing the theoretical framework. First, we present single
and multicomponent BECs, the mean-field regime and its constraints, and the
conditions of existence for droplets and solitons. Then, we introduce dipolar
interactions, their effect on the stability and geometry of the system, and how dipolar
droplets, as well as crystals of droplets, may form due to the stabilizing effect of
quantum fluctuations. Last, we present BECs coupled to artificial density-dependent
gauge potentials, which have effective interactions that are chiral (i.e., depend on the
direction of motion of the atoms).
The first system under consideration is a BEC confined in a shell-shaped potential in
the presence of gravitational sag. We explore both the dipolar and nondipolar cases
and study the interplay between the anisotropy of the dipolar interactions (or the lack
thereof) and the privileged direction set by gravity. We study the ground-state
configurations of the system and the dynamics when changing perturbatively the
orientation or the strength of the gravitational force.
Afterward, we move to binary mixtures of nondipolar and dipolar BECs to investigate,
respectively, the formation of solitons and droplets.
In the first case, we consider a quasi-1D bosonic mixture within the immiscible regime.
We examine the dynamics of a dark soliton moving through the domain wall between
components, which may generate, in some cases, a dark--bright soliton. The resulting
dark-bright soliton follows a harmonic-like trajectory. Concerning the dipolar case, we
propose a two-component BEC with antiparallel dipoles, which forms self-bound
structures when unconfined. In the presence of confinement in the dipole direction,
the mixture can form incoherent stripes if the interactions are symmetric and droplet
crystals if they are asymmetric. These droplet crystals are composed of an array of
incoherent droplets in one component surrounded by an interstitial superfluid in the
other. In both cases, the resulting structures are self-bound in the transversal plane.
To study the effect of chiral interactions, we regard a quasi-1D BEC confined in a
rotating ring geometry and coupled to a density-dependent gauge potential, which
produces chiral currents. We give an analytical description of the general stationary
states of the system (plane waves and solitons) and test their dynamical stability.
Finally, we split the system into two components employing a double-well potential to
obtain a 1/2-spinor condensate. Besides the linear coupling between the two spin
states, the system also presents an effective spin-orbit coupling due to the chiral nature
of the interactions. The solutions of the scalar case are also solutions of the spinor case,
but now the system also supports states that may have nonzero polarization, leading,
for instance, to Josephson vortices.
ca
dc.description.abstract
[cat] En aquesta tesi estudiem condensats de Bose-Einstein de gasos diluïts amb
interaccions febles, i ens centrem en dos temes: interaccions anisotròpiques i estats
autolligats.
Les interaccions més comunes en gasos ultrafreds són isotròpiques i de curt abast.
Tanmateix, poden ser anisotròpiques, per exemple, quan el gas està format per àtoms
altament magnètics o quan se sotmet a un camp de gauge artificial. Les interaccions
són, respectivament, dipolars o quirals. El caràcter interactuant del sistema dona lloc
a dues possibles solucions autolligades: gotes quàntiques i solitons. Les gotes es
formen gràcies al balanç entre les fluctuacions quàntiques i les interaccions de camp
mitjà, mentre que els solitons són pertorbacions localitzades que mantenen la seva
forma per la competició entre la dispersió i la no-linealitat del medi.
Comencem la tesi desenvolupant el marc teòric. Primer, presentem els condensats
formats per una o més components, el règim de camp mitjà, les gotes i els solitons.
Seguidament, introduïm les interaccions dipolars, les gotes dipolars i els cristalls de
gotes. Per acabar, presentem condensats acoblats a potencials de gauge dependents de
la densitat, on les interaccions efectives esdevenen quirals.
El primer sistema que considerem és un condensat dipolar confinat en un potencial
amb forma de closca sota l'efecte de la gravetat. A continuació, ens centrem en les
barreges binàries per investigar la formació de solitons i gotes. En el primer cas,
considerem una barreja immiscible quasi-unidimensional i no-dipolar, i analitzem la
formació dinàmica d'un solitó fosc-brillant. En el segon, proposem una barreja dipolar
amb dipols antiparal·lels, on observem estructures autolligades. Quan el sistema està
confinat al llarg de la direcció dels dipols, la barreja pot formar franges incoherents i
cristalls de gotes segons si les interaccions són simètriques o asimètriques.
Respecte a les interaccions quirals, considerem un condensat confinat en un anell en
rotació i acoblat a un potencial de gauge depenent de la densitat, de manera que es
produeixen corrents persistents quirals. Finalment, separem el sistema en dues
components amb un doble pou per obtenir un condensat espinor que, per la naturalesa
quiral de les interaccions, presenta un acoblament espí-òrbita efectiu.
ca
dc.format.extent
256 p.
ca
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
ca
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Condensació de Bose-Einstein
ca
dc.subject
Condensación de Bose-Einstein
ca
dc.subject
Bose-Einstein condensation
ca
dc.subject
Moments dipolars
ca
dc.subject
Momentos dipolares
ca
dc.subject
Dipole moments
ca
dc.subject
Camps de galga (Física)
ca
dc.subject
Campos de gauge (Física)
ca
dc.subject
Gauge fields (Physics)
ca
dc.subject.other
Ciències Experimentals i Matemàtiques
ca
dc.title
Anisotropic interactions and self-bound solutions in Bose-Einstein condensates
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Guilleumas, Montserrat
dc.contributor.director
Mayol Sánchez, Ricardo
dc.contributor.tutor
Soto Riera, Joan
dc.rights.accessLevel
info:eu-repo/semantics/openAccess