A Distributed and Heuristic Policy-based Management Architecture for Large-Scale Grids

dc.contributor
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.contributor.author
Magaña Perdomo, Edgar
dc.date.accessioned
2011-04-12T15:27:25Z
dc.date.available
2008-11-13
dc.date.issued
2008-05-30
dc.date.submitted
2008-11-06
dc.identifier.isbn
9788469186305
dc.identifier.uri
http://www.tdx.cat/TDX-1106108-120044
dc.identifier.uri
http://hdl.handle.net/10803/6917
dc.description.abstract
The aim of this thesis is to design and implement a new Grid Resource Management methodology, where non-massive resources owners would be able to share their resources and integrate human collaboration across multiple domains regardless of network technology, operative platform or administrative domain.<br/>This thesis proposes a distributed and heuristic policy-based resource management architecture for large-scale Grids. The resource management architecture proposed herein is composed of four main building blocs: services management, resource discovery and monitoring, resource scheduling and jobs allocation and activation. The Grid Services Management (GSM) and Jobs Allocation and Activation (JAA) are supported by means of a Policy-based Grid Resource Management Architecture (PbGRMA). This architecture is able to identify service needs arising from diverse sources during the deployment and management of Grid Services, such as requirements demanded by customers, applications and network conditions. Afterwards, the PbGRMA merges these requirements into deployment policies for the corresponding Grid Services. The Grid Resource Discovery and Monitoring (GRDM) is supported by the introduction of the SNMP-based Balanced Load Monitoring Agents for Resource Scheduling (SBLOMARS), in which network and computational resources are monitored by distributed agents. This allows for a flexible, heterogeneous and scalable monitoring system. The Grid Resource Scheduling (GRS) is based on the Balanced Load Multi-Constrained Resource Scheduler (BLOMERS). This heuristic scheduler represents an alternate way of solving the inherent NP-hard problem for resource scheduling in large-scale distributed networks by means of the implementation of a Genetic Algorithm.<br/>Finally, based on the outcome of both the GRDM and GRS, the PbGRMA allocates the corresponding Grid Services by means of its interfaces with Globus ToolKit Middleware and Unix-based CLI commands along of any large-scale Grid Infrastructure. <br/>The synergy obtained by these components allows Grid administrators to exploit the available resources with predetermined levels of Quality of Service (QoS), reducing computational costs and makespan in resource scheduling while ensuring that the resource load is balanced throughout the Grid. The makespan of a schedule is the time required for all jobs to be processed when no one job could be interrupted during its execution and each node can perform at most one operation at any time.<br/>This new approach has been successfully tested in a real large-scale scenario such as Grid5000. The results presented along this Thesis show that our general solution is a reliable, flexible and scalable architecture to deploy and manage Grid Services in large-scale Grid Infrastructures. Moreover, the substitution of the heuristic algorithm approach used into the Grid Resource Scheduling (GRS) phase by other non-heuristics selection algorithms could make our solution useful in smaller Grid Infrastructures.
eng
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
monitoring agents
dc.subject
genetic alghorithms
dc.subject
BLOMERS
dc.subject
SBLOMARS
dc.subject
resource management
dc.subject
monitoring system
dc.subject
policy-based management
dc.subject
CISCO IPSLA
dc.title
A Distributed and Heuristic Policy-based Management Architecture for Large-Scale Grids
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
621.3
cat
dc.contributor.director
Serrat Fernández, Joan
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
cat
dc.identifier.dl
B.6328-2009


Documentos

01Emp01de01.pdf

6.276Mb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)