Essential Tools and Strategies for the Participation of Battery Energy Storage Systems in Ancillary Services

dc.contributor
Universitat Jaume I. Escola de Doctorat
cat
dc.contributor.author
Cardo Miota, Javier
dc.date.accessioned
2024-11-19T10:06:22Z
dc.date.issued
2024-11-13
dc.identifier.uri
http://hdl.handle.net/10803/692564
dc.description
Doctorat internacional
ca
dc.description.abstract
This thesis aims to develop the necessary tools to optimize the participation of both standalone Battery Energy Storage Systems (BESSs) and hybrid Photovoltaic (PV) installations with BESS in energy and frequency regulation markets. Firstly, the thesis reviews the current and future state of the European power systems and electricity markets, focusing on Spain and Ireland, to identify profitable markets for these installations. The thesis then analyzes and predicts market prices and energy variables using different time series analyses and forecasting techniques, including those based on Machine Learning (ML) and Deep Learning. Additionally, it examines the impact of battery degradation in grid applications, assessing ML algorithms for diagnosing battery health and the impact of market structures on battery life. Finally, the thesis proposes Reinforcement Learning strategies to optimize hybrid PV-BESS operations in different dynamic environments, including cost minimization for residential prosumers and energy volume bidding in both energy and ancillary services markets.
ca
dc.format.extent
303 p.
ca
dc.language.iso
eng
ca
dc.publisher
Universitat Jaume I
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
ca
dc.rights.uri
http://creativecommons.org/licenses/by-sa/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
European electricity markets
ca
dc.subject
Ancillary services
ca
dc.subject
Battery energy storage systems
ca
dc.subject
Machine learning
ca
dc.subject
Deep learning
ca
dc.subject
Reinforcement learning
ca
dc.subject.other
Enginyeria, industria i construcció
ca
dc.title
Essential Tools and Strategies for the Participation of Battery Energy Storage Systems in Ancillary Services
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
62
ca
dc.subject.udc
620
ca
dc.contributor.director
Beltran, Hector
dc.contributor.director
Pérez, Emilio
dc.contributor.tutor
Belenguer, Enrique
dc.embargo.terms
12 mesos
ca
dc.date.embargoEnd
2025-11-13T01:00:00Z
dc.rights.accessLevel
info:eu-repo/semantics/embargoedAccess
dc.identifier.doi
http://dx.doi.org/10.6035/14107.2024.609864
ca
dc.description.degree
Programa de Doctorat en Tecnologies Industrials i Materials


Documents

This document contains embargoed files until 2025-11-13

This item appears in the following Collection(s)