dc.contributor
Universitat de Barcelona. Departament de Ciència dels Materials i Química Física
dc.contributor.author
Vidal Ramon, Daniel
dc.date.accessioned
2024-12-03T11:12:19Z
dc.date.available
2024-12-03T11:12:19Z
dc.date.issued
2024-11-20
dc.identifier.uri
http://hdl.handle.net/10803/692651
dc.description
Programa de doctorat en Química Teòrica i Modelització Computacional
ca
dc.description.abstract
[eng] Spin-crossover (SCO) is a phenomenon observed in certain transition metal complexes,
particularly d4–d7 metals, where a reversible transition between high-spin (HS) and low-spin
(LS) electronic states occurs in response to external stimuli like temperature, pressure, or light.
This switch alters magnetic, optical, and structural properties, making SCO materials attractive
for applications in molecular electronics, data storage, sensors, and smart devices. Among
transition metal complexes, FeIII SCO complexes are widely studied because of their distinct
electronic configurations and stability. The transition between HS and LS states is governed by
the metal-ligand interaction, specifically the ligand field strength. A stronger ligand field
stabilizes the LS state, while a weaker one favours the HS state, influencing the system's
magnetic properties. These transitions, characterised by changes in magnetic moment and
colour, make FeIII complexes a key focus for material design.
This thesis investigates the SCO behaviour of FeIII complexes through computational
and machine learning (ML) techniques, with a focus on ligand functionalization, benchmarking
of density functional theory (DFT) methods, and studying dinuclear and polynuclear systems.
The research begins with a systematic benchmark analysis of different DFT functionals to
determine the best-suited computational approaches for predicting the spin state energetics and
transition temperatures of FeIII complexes. The results show that while certain functionals
provide accurate predictions of SCO properties, the accuracy depends heavily on the specific
characteristics of the FeIII systems being studied.
A key contribution of the research is the exploration of ligand design and its impact on
SCO behaviour. By altering ligand substituents, the electronic environment around the metal
ion can be fine-tuned, providing control over the transition temperature (T(1/2) and other SCO
properties. For instance, electron-donating groups on the ligand tend to lower T(1/2) , while
electron-withdrawing groups increase it. These ligand-induced modifications are particularly
important in FeIII complexes, as both electronic and steric factors play critical roles in
governing the spin state transition. The study demonstrates how strategic ligand design can be
used to tailor SCO properties for specific applications.
In addition to mononuclear FeIII complexes, the thesis examines dinuclear systems,
where the presence of two metal centres introduces additional complexity. In these systems,
the interaction between metal centres results in cooperative SCO behaviour, such as two-step
transitions or the stabilization of intermediate spin states. The research highlights the need for
more sophisticated computational models to accurately capture these complex behaviours in
dinuclear and polynuclear systems. The findings contribute to the growing understanding of
how intermetallic interactions can be leveraged to design SCO materials with specific magnetic
properties, which are critical for potential applications in sensors and molecular electronics.
Machine learning (ML) models, particularly Kernel Ridge Regression (KRR) and
Gaussian Processes (GP), are introduced as complementary tools to traditional computational
methods. These ML models are trained on datasets generated from DFT calculations and are
used to predict SCO properties such as transition temperatures and spin state energetics. The
ML models offer a scalable and efficient approach to studying larger and more complex
systems, significantly reducing computational costs while maintaining high accuracy. Feature
importance analysis reveals key molecular descriptors that drive SCO behaviour, providing
valuable insights into which molecular modifications are likely to result in desirable SCO
properties. This approach accelerates the discovery and design of new SCO materials.
The integration of machine learning, ligand design, and advanced computational
methods in this thesis presents a comprehensive framework for understanding and predicting
SCO behaviour in FeIII complexes. The combination of these approaches enables the
development of customizable materials for a range of technological applications, including
molecular switches, sensors, and memory devices.
ca
dc.description.abstract
[cat] El fenomen de spin-crossover (SCO) es produeix en certs complexos de metalls de
transició, particularment en els metalls d4–d7, on hi ha una transició reversible entre els estats de spin alt (HS) i spin baix (LS) en resposta a estímuls externs com la temperatura, la pressió o la llum. Aquest canvi afecta les propietats magnètiques, òptiques i estructurals, fent que els materials SCO siguin útils per a aplicacions en electrònica molecular, emmagatzematge de dades, sensors i dispositius intel·ligents. Entre els complexos de metalls de transició, els complexos de FeIII amb SCO són particularment estudiats per la seva estabilitat i configuracions electròniques úniques.
Aquesta tesi investiga el comportament SCO dels complexos de FeIII mitjançant
tècniques computacionals i de machine learning (ML). Es centra en la funcionalització de
lligands, l'avaluació de mètodes de la teoria del funcional de densitat (DFT) i l'estudi de
sistemes dinuclears i polinuclears. Els resultats mostren que alguns funcionals de DFT poden
predir amb precisió les propietats de SCO, encara que la seva precisió depèn de les
característiques específiques dels sistemes de FeIII.
També s'explora com el disseny de lligands influeix en el comportament SCO. En
modificar els lligands, es pot ajustar la temperatura de transició (T1/2) i altres propietats. Els
grups donadors d'electrons tendeixen a disminuir el T1/2, mentre que els grups acceptors el fan
augmentar, la qual cosa és clau per al disseny de materials personalitzats.
A més, s'estudien sistemes dinuclears, on la interacció entre centres metàl·lics provoca
comportaments més complexos, com transicions en dues etapes. Finalment, s'utilitzen models de ML per predir les propietats SCO de manera més eficient, reduint notablement els costos computacionals.
ca
dc.format.extent
211 p.
ca
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/
ca
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Estructura electrònica
ca
dc.subject
Estructura electrónica
ca
dc.subject
Electronic structure
ca
dc.subject
Spin (Física nuclear)
ca
dc.subject
Espín nuclear
ca
dc.subject
Nuclear spin
ca
dc.subject
Lligands (Bioquímica)
ca
dc.subject
Ligandos (Bioquímica)
ca
dc.subject
Ligands (Biochemistry)
ca
dc.subject
Aprenentatge automàtic
ca
dc.subject
Aprendizaje automático
ca
dc.subject
Machine learning
ca
dc.subject.other
Ciències Experimentals i Matemàtiques
ca
dc.title
Electronic Structure and machine learning protocols for pre-screening of near-room temperature spin-crossover materials
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Ribas Ariño, Jordi
dc.contributor.director
Cirera Fernández, Jordi
dc.contributor.tutor
Ribas Ariño, Jordi
dc.rights.accessLevel
info:eu-repo/semantics/openAccess