dc.contributor
Universitat de Barcelona. Departament de Matemàtiques i Informàtica
dc.contributor.author
Circelli, Michele
dc.date.accessioned
2024-12-19T10:55:16Z
dc.date.available
2024-12-19T10:55:16Z
dc.date.issued
2024-07-03
dc.identifier.uri
http://hdl.handle.net/10803/692999
dc.description
Programa de Doctorat en Matemàtiques i Informàtica / En cotutel·la amb la Università di Bologna (Italia)
ca
dc.description.abstract
[eng] In this thesis we adapted the problem of continuous congested optimal transport to the Heisenberg group, equipped with a sub-Riemannian metric: we restricted the set of admissible paths to the horizontal curves. We obtained the existence of equilibrium configurations, known as Wardrop Equilibria, through the minimization of a convex functional, over a suitable set of measures on the horizontal curves. Moreover, such equilibria induce trans port plans that solve a Monge-Kantorovic problem associated with a cost, depending on the congestion itself, which we rigorously defined. We also proved the equivalence between this problem and a minimization problem defined over the set of p-summable horizontal vector fields with prescribed divergence. We showed that this new problem admits a dual formulation as a classical minimization problem of Calculus of Variations. In addition, even the Monge-Kantorovich problem associated with the sub-Riemannian distance turns out to be equivalent to a minimization problem over measures on horizontal curves. Passing through the notion of horizontal transport density, we proved that the Monge-Kantorovich problem can also be formulated as a minimization problem with a divergence-type constraint. Its dual formulation is the well-known Kantorovich duality theorem. In the end, we treated the continuous congested optimal transport problem with orthotropic cost function: we proved the Lipschitz regularity for solutions to a pseudo q-Laplacian-type equation arising from it.
ca
dc.format.extent
189 p.
ca
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
ca
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Varietats de Riemann
ca
dc.subject
Variedades de Riemann
ca
dc.subject
Riemannian manifolds
ca
dc.subject
Anells commutatius
ca
dc.subject
Anillos conmutativos
ca
dc.subject
Commutative rings
ca
dc.subject.other
Ciències Experimentals i Matemàtiques
ca
dc.title
Congested Optimal Transport in the Heisenberg Group
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Clop, Albert
dc.contributor.director
Citi, Giovanna
dc.contributor.tutor
Clop, Albert
dc.rights.accessLevel
info:eu-repo/semantics/openAccess