Universitat Rovira i Virgili. Departament d'Enginyeria Electrònica, Elèctrica i Automàtica
En esta tesis hemos desarrollado los modelos compactos explícitos de carga y de capacitancia adaptados para los dispositivos dopados y no dopados de canal largo (DG MOSFETs dopados, DG MOSFETs no dopados, UTB MOSFETs no dopados y SGT no dopados) de un modelo unificado del control de carga derivado de la ecuación de Poisson. El esquema de modelado es similar en todos estos dispositivos y se adapta a cada geometría. Los modelos de la C.C. y de la carga son completamente compatibles. Las expresiones de la capacitancia se derivan del modelo de la carga. La corriente, la carga total y las capacitancias se escriben en términos de las densidades móviles de la carga en los extremos de fuente y drenador del canal. Las expresiones explícitas e infinitamente continuas se utilizan para las densidades móviles de la carga en la fuente y drenador. Las capacitancias modeladas demuestran el acuerdo excelente con las simulaciones numéricas 2D y 3D (SGT), en todos los regímenes de funcionamiento. Por lo tanto, el modelo es muy prometedor para ser utilizado en simuladores del circuito. Desafortunadamente, no mucho trabajo se ha dedicado a este dominio de modelado. Las cargas analíticas y las capacitancias, asociadas a cada terminal se prefieren en la simulación de circuito. Con respecto al SGT MOSFET, nuestro grupo fue el primero en desarrollar y publicar un modelo de las cargas y de las capacitancias intrínsecas, que es también analítico y explícito. La tesis es organizada como sigue: el capítulo (1) presenta el estado del arte, capítulo (2) el modelado compacto de los cuatro dispositivos: DG MOSFETs dopados, DG MOSFETs no dopados, UTB MOSFETs no dopados y SGT no dopados; en el capítulo (3) estudiamos las capacitancias de fricción en MuGFETs. Finalmente el capítulo (4) resuma el trabajo hecho y los futuros objetivos que necesitan ser estudiados. <br/>Debido a la limitación de los dispositivos optimizados disponibles para el análisis, la simulación numérica fue utilizada como la herramienta principal del análisis. Sin embargo, cuando estaban disponibles, medidas experimentales fueron utilizadas para validar nuestros resultados. Por ejemplo, en la sección 2A, en el caso de DG MOSFETs altamente dopados podríamos comparar nuestros resultados con datos experimentales de FinFETs modelados como DG MOSFETs. La ventaja principal de este trabajo es el carácter analítico y explícito del modelo de la carga y de la capacitancia que las hace fácil de implementar en simuladores de circuitos. El modelo presenta los resultados casi perfectos para diversos casos del dopaje y para diversas estructuras no clásicas del MOSFET (los DG MOSFETs, los UTB MOSFETs y los SGTs). La variedad de las estructuras del MOSFET en las cuales se ha incluido nuestro esquema de modelado y los resultados obtenidos, demuestran su validez absoluta. En el capítulo 3, investigamos la influencia de los parámetros geométricos en el funcionamiento en RF de los MuGFETs. Demostramos el impacto de parámetros geométricos importantes tales como el grosor de la fuente y del drenador o, el espaciamiento de las fins, la anchura del espaciador, etc. en el componente parásito de la capacitancia de fricción de los transistores de la múltiple-puerta (MuGFET). Los resultados destacan la ventaja de disminuir el espaciamiento entre las fins para MuGFETs y la compensación entre la reducción de las resistencias parásitas de fuente y drenador y el aumento de capacitancias de fricción cuando se introduce la tecnología del crecimiento selectivo epitaxial (SEG). La meta de nuestro estudio y trabajo es el uso de nuestros modelos en simuladores de circuitos. El grupo de profesor Aranda, de la Universidad de Granada ha puesto el modelo actual de SGT en ejecución en el simulador Agilent ADS y buenos resultados fueron obtenidos.
In this thesis we have developed explicit compact charge and capacitance models adapted for doped and undoped long-channel devices (doped Double-Gate (DG) MOSFETs, undoped DG MOSFETs, undoped Ultra-Thin-Body (UTB) MOSFETs and undoped Surrounding Gate Transistor (SGT)) from a unified charge control model derived from Poisson's equation. The modelling scheme is similar in all these devices and is adapted to each geometry. The dc and charge models are fully compatible. The capacitance expressions are derived from the charge model. The current, total charges and capacitances are written in terms of the mobile charge sheet densities at the source and drain ends of the channel. Explicit and infinitely continuous expressions are used for the mobile charge sheet densities at source and drain. As a result, all small signal parameters will have an infinite order of continuity. The modeled capacitances show excellent agreement with the 2D and 3D (SGT) numerical simulations, in all operating regimes. Therefore, the model is very promising for being used in circuit simulators. <br/>Unfortunately, not so much work has been dedicated to this modelling domain. Analytical charges and capacitances, associated with each terminal are preferred in circuit simulation. Regarding the surrounding-gate MOSFET, our group was the first to develop and publish a model of the charges and intrinsic capacitances, which is also analytic and explicit. The thesis is organized as follows: Chapter (1) presents the state of the art, Chapter (2) the compact modeling of the four devices: doped DG MOSFETs, undoped DG MOSFETs, undoped UTB MOSFETs and undoped SGT; in Chapter (3) we study the fringing capacitances in MuGFETs. Finally Chapter (4) summarizes the work done and the future points that need to be studied. <br/>Due to the limitation of available optimized devices for analysis, numerical simulation was used as the main analysis tool. However, when available, measurements were used to validate our results. The experimental part was realised at the Microelectronics Laboratory, Université Catholique de Louvain, Louvain-la Neuve, Belgium. <br/>For example, in section 2A, in the case of highly-doped DG MOSFETs we could compare our results with experimental data from FinFETs modeled as DG MOSFETs. The main advantage of this work is the analytical and explicit character of the charge and capacitance model that makes it easy to implement in circuit simulators. The model presents almost perfect results for different cases of doping (doped/undoped devices) and for different non classical MOSFET structures (DG MOSFET, UTB MOSFETs and SGT). The variety of the MOSFET structures in which our modeling scheme has been included and the obtained results, demonstrate its absolute validity. <br/>In chapter 3, we investigate the influence of geometrical parameters on the RF performance in MuGFETs. We show the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET). Results highlight the advantage of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. <br/>The goal of our study and work is the usage of our models in circuit simulators. This part, of implementing and testing our models of these multi gate MOSFET devices in circuit simulators has already begun. The group of Professor Aranda, from the University of Granada has implemented the SGT current model in the circuit simulator Agilent ADS and good results were obtained.
development of compact small signal static models
621.3 Electrical engineering
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.