Languages Generated by Iterated Idempotencies.

dc.contributor
Universitat Rovira i Virgili. Departament de Filologies Romàniques
dc.contributor.author
Leupold, Klaus-Peter
dc.date.accessioned
2011-04-12T18:09:13Z
dc.date.available
2009-03-16
dc.date.issued
2006-11-22
dc.date.submitted
2007-06-28
dc.identifier.isbn
9788469126530
dc.identifier.uri
http://www.tdx.cat/TDX-0628107-134019
dc.identifier.uri
http://hdl.handle.net/10803/8791
dc.description.abstract
The rewrite relation with parameters m and n and with the possible length limit = k or :::; k we denote by w~, =kW~· or ::;kw~ respectively. The idempotency languages generated from a starting word w by the respective operations are wD<l::', w=kD<l::' and W<;kD<l::'.<br/>Also other special cases of idempotency languages besides duplication have come up in different contexts. The investigations of Ito et al. about insertion and deletion, Le., operations that are also observed in DNA molecules, have established that w5 and w~ both preserve regularity.<br/>Our investigations about idempotency relations and languages start out from the case of a uniform length bound. For these relations =kW~ the conditions for confluence are characterized completely. Also the question of regularity is -k n answered for aH the languages w- D<lm . They are nearly always regular. Only the languages wD<lo for n > 1 are more complicated and belong to the class of context-free languages.<br/>For a generallength bound, i.e."for the relations :"::kW~, confluence does not hold so frequently. This complicatedness of the relations results also in more complicated languages, which are often non-regular, as for example the languages W<;kD<l::' for aH bounds k 2 4. For k :::; 2 they are regular. The case of k :::; 3, though, remains open. We show, however, that none of these languages ever exceeds the complexity of being context-free.<br/>Without any length bound, idempotency relations have a very complicated structure. Over alphabets of one or two letters we still characterize the conditions for confluence. Over three or more letters, in contrast, only a few cases are solved. We determine the combinations of parameters that result in the regularity of wD<l::', when the alphabet of w contains only two letters. Only the case of 2 :::; m < n remains open.<br/>In a second chapter sorne more involved questions are solved for the special case of duplication. First we shed sorne light on the reasons why it is so difficult to determine the context-freeness ofduplication languages. We show that they fulfiH aH pumping properties and that they are very dense. Therefore aH the standard tools to prove non-context-freness do not apply here.<br/>The concept of root in Formal Language ·Theory is frequently used to describe the reduction of a word to another one, which is in sorne sense elementary.<br/>For example, there are primitive roots, periodicity roots, etc. Elementary in connection with duplication are square-free words, Le., words that do not contain any repetition. Thus we define the duplication root of w to consist of aH the square-free words, from which w can be reached via the relation w~.<br/>Besides sorne general observations we prove the decidability of the question, whether the duplication root of a language is finite.<br/>Then we devise acode, which is robust under duplication of its code words.<br/>This would keep the result of a computation from being destroyed by dupli cations in the code words. We determine the exact conditions, under which infinite such codes exist: over an alphabet of two letters they exist for a length bound of 2, over three letters already for a length bound of 1.<br/>Also we apply duplication to entire languages rather than to single words; then it is interesting to determine, whether regular and context-free languages are closed under this operation. We show that the regular languages are closed under uniformly bounded duplication, while they are not closed under duplication with a generallength bound. The context-free languages are closed under both operations.<br/>The thesis concludes with a list of open problems related with the thesis' topics.
eng
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat Rovira i Virgili
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Duplication
dc.subject
Idempotency
dc.subject
formal languages
dc.title
Languages Generated by Iterated Idempotencies.
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
cat
dc.subject.udc
51
cat
dc.subject.udc
512
cat
dc.contributor.authoremail
peter.leupold@web.de
dc.contributor.director
Mitrana, Victor
dc.contributor.director
Karhumäki, Juhani
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
T.1412-2008


Documents

DissertationLeupold.pdf

1.870Mb PDF

This item appears in the following Collection(s)