Copolimerització de DGEBA amb Àcid de Meldrum i Derivats

dc.contributor
Universitat Rovira i Virgili. Departament de Química Analítica i Química Orgànica
dc.contributor.author
González Búrdalo, Lidia
dc.date.accessioned
2011-04-12T18:14:14Z
dc.date.available
2009-03-10
dc.date.issued
2008-04-11
dc.date.submitted
2008-07-09
dc.identifier.isbn
9788469197592
dc.identifier.uri
http://www.tdx.cat/TDX-0709108-133055
dc.identifier.uri
http://hdl.handle.net/10803/9029
dc.description.abstract
El polímers termoestables són materials de gran interès i amb una amplia versatilitat en el món industrial degut a les seves excel·lents propietats. El treball que es presenta, s'emmarca en aquest camp i es dirigeix cap a l'obtenció de nous materials epoxídics, que puguin ésser utilitzats com a recobriments de components electrònics. Els objectius que es van plantejar van ser: obtenir materials que 1) durant el procés de curat, experimentessin una baixa contracció, 2) permetessin una degradació tèrmica de forma controlada un cop ha finalitzat la vida útil dels components i 3) milloressin les propietats mecàniques respecte als materials epoxídics convencionals. <br/><br/>La contracció de la xarxa polimèrica durant el procés de curat produeix tensions mecàniques internes i conseqüentment pot conduir a l'aparició d'esquerdes. Els espiroortoesters (SOEs) són monòmers considerats expansibles, que experimenten expansió durant el procés de polimerització. La síntesi dels SOEs es pot portar a terme per reacció d'epòxids amb lactones en presència d'un catalitzador àcid de Lewis. L'expansió en volum d'aquests monòmers es deguda a que en la polimerització per obertura d'anell es produeix un canvi de distancies covalents en la forma cíclica a distancies de Van der Waals en la forma oberta. La copolimerització de reïnes epoxi amb lactones en presència d'un àcid de Lewis porta a la formació "in situ" d'espiroortoesters. Un cop formats, polimeritzen i donen lloc a unitats de poli(èter-ester) a la xarxa tridimensional. Al polimeritzar generen expansió en l'última etapa del curat, precisament quan el material no té mobilitat, evitant així l'aparició de tensions internes.<br/><br/>D'altra banda, l'estructura típica d'un termoestable implica que aquests materials, una vegada aplicats sobre un component electrònic, no poden ser eliminats ni mitjançant dissolvents ni per escalfament. La introducció de grups ester a la xarxa, especialment si son terciaris, permet disminuir la temperatura de degradació tèrmica en comparació a la dels materials epoxídics convencionals. Sotmesos els materials a un procés tèrmic, la xarxa termoestable sofreix una degradació parcial. Aquesta és suficient perquè es puguin eliminar per dissolució o mitjançant fricció mecànica. Així, el material electrònic pot ésser reparat o reciclat.<br/><br/>Finalment, la introducció de restes alifàtiques a la xarxa termoestable redueix la densitat d'entrecreuament i amb ella la fragilitat dels materials, fent-los més flexibles.<br/><br/>S'ha utilitzat una reïna comercial, el diglicidil èter del bisfenol A (DGEBA). Com a lactones el 2,2-dimetil-4,6-dioxo-1,3-dioxà o àcid de Meldrum (MA) i tres dels seus derivats amb la posició 5 disubstituïda. L'estructura d'aquests compostos permet introduir grups ester terciaris i cadenes alifàtiques a la xarxa epoxídica.<br/><br/>S'ha sintetitzat una nova reïna epoxi: la 5,5-bis(2,3-epoxipropil)-2,2-dimetil-4,6-dioxo-1,3-dioxà (DGMA), on es conjuga en un mateix compost l'anell de bislactona i els grups glicidílics. Aquesta reïna s'ha homopolimeritzat i copolimeritzat amb la reïna epoxi de diglicidil èter de bisfenol A.<br/><br/>Com a àcids de Lewis s'han estudiat els triflats de terres rares. Aquests permeten dur a terme el curat en condicions atmosfèriques. Els materials obtinguts amb els triflats de terres rares s'han comparat amb els obtinguts amb trifluorur de bor complexat, que és un iniciador catiònic convencional.<br/><br/>A més, s'han obtingut materials a partir dels mateixos monòmers utilitzant un iniciador aniònic. En aquest cas, el mecanisme de curat no implica la generació de grups espiroortoester, però igualment porta a xarxes amb estructura de poli(èter-ester).<br/><br/>Les etapes seguides en el present treball són:<br/><br/>1. Síntesi i caracterització estructural dels derivats de l'àcid de Meldrum.<br/>2. Estudi del mecanisme de les reaccions de copolimerització catiònica i aniònica de la reïna epoxi amb l'àcid de Meldrum i derivats emprant els triflats de lantànid i el BF3·MEA i la DMAP, mitjançant calorimetria i FTIR/ATR.<br/>3. S'ha estudiat la cinètica dels processos de curat per calorimetria.<br/>4. Caracterització estructural dels diferents materials obtinguts.<br/>5. Avaluació de les propietats tèrmiques i mecàniques dels materials i del grau de contracció que experimenten en curar.<br/>6. Estudi dels processos de degradació dels materials termoestables obtinguts, així com les condicions que es produeix.<br/><br/> De l'estudi realitzat s'ha pogut concloure que s'ha assolit una reducció global de l'encongiment al curar, s'han obtingut materials que inicien la degradació a temperatures inferiors a les de les reïnes epoxi convencionals i que van resultar ser més flexibles.<br/><br/>ENGLISH
cat
dc.description.abstract
Thermosetting polymers are interesting materials widely versatilities in the electronics industry because of their good characteristics. The present work is included in this field and it is focused in obtaining new epoxydic thermosets that may be useful as coatings for electronic devices. The objectives posed in this work were to obtain materials that: 1) undergo low shrinkage during curing process, 2) allow to be thermally degraded in a controlled way once their service life is over and 3) improve the mechanical properties with respect to the conventional epoxy materials. <br/> The shrinkage of the polymeric network during curing process produces internal mechanical stress and consequently it can lead to the appearance of microvoids and microcracks. Spiroorthoesters (SOEs) are considered to be expandable monomers, which experience expansion during polymerization process. SOEs can be synthesized by reaction of epoxides with lactones in the presence of a Lewis acid as catalyst. The expansion in volume of these monomers is due to the ring-opening polymerization process. It produces a change in atomic distances from the cyclic form (covalent distance) to the open one (Van der Waals distance). The copolymerization of epoxy resins with lactones in the presence of a Lewis acid leads to "in situ" formation of spiroorthoesters. Once it is formed, it polymerizes yielding poly(ether-ester) unities into the three-dimensional network. On polymerizing expansion is produced, just when the material has no mobility and therefore avoiding internal stress.<br/> The typical structure of a thermoset implies that once it is applied over an electronic device neither solvents nor heat can remove it. The introduction of ester groups into the network, especially if are tertiary, allows diminishing the temperature of thermal degradation in comparison to that of conventional epoxy materials. When these new materials are subjected to a thermal process, the thermoset network undergoes a partial degradation. This is enough to remove it by dissolution or mechanical friction. Therefore, the electronic device can be repaired or recycled. <br/><br/> Finally, the introduction of aliphatic moieties into the thermoset network reduces the cross-linking density and the fragility of materials, giving more flexibility to the material.<br/><br/> In the present work, a commercial epoxy resin, diglycidyl ether of bisphenol A (DGEBA) was used. As lactones 2,2-dimethyl-4,6-dioxo-1,3-dioxane or Meldrum acid (MA) and three of its derivatives with the five position disubstituted. The structure of these compounds allows incorporating tertiary ester groups and aliphatic chains into the epoxydic network. <br/><br/> A new epoxy resin was synthesized: 5,5-bis(diglycidyl)-2,2-dimethyl-4,6-dioxo-1,3-dioxane (DGMA), which present both a bislactone ring and glicydilyc groups. This resin was homopolymerized and copolymerized with the epoxy resin of diglycidyl ether of bisphenol A.<br/><br/> As Lewis acids triflates of rare earths were studied. These allow curing in atmospheric conditions. The materials obtained with triflates of rare earths were compared to the materials obtained with boron trifluoride complex, which is a conventional cationic initiator.<br/> <br/><br/> Furthermore, materials from the same monomers were obtained by using an anionic initiator. In this case, the curing mechanism does not imply the generation of spiroorthoester groups, but equally it leads to networks with a poly (ether-ester) structure. <br/><br/> The followed steps in the present work are:<br/><br/>1. Synthesis and structural characterization of Meldrum acid derivatives. <br/>2. Study of the mechanism of cationic and anionic copolymerization reactions of the epoxy resin with Meldrum acid and its derivatives using lanthanide triflats, BF3·MEA and DMAP, by differential scanning calorimetry and FTIR-ATR. <br/>3. The kinetics of the curing process was studied by differential scanning calorimetry.<br/>4. Structural characterization of the materials obtained.<br/>5. Evaluation of the thermal and mechanical properties of materials and the degree of shrinkage experimented in the curing. <br/>6. Study of the degradation process of thermosetting materials obtained and the conditions in which it is produced. <br/><br/> From the study carried out it can be concluded that a global reduction in the shrinkage on curing was achieved. Also, materials that start the degradation at lower temperatures than conventional epoxy resins were obtained. These materials come to be more flexible
eng
dc.format.mimetype
application/pdf
dc.language.iso
cat
dc.publisher
Universitat Rovira i Virgili
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
termoestables
dc.subject
degradació
dc.subject
encongiment
dc.subject
triflats de lantànid
dc.subject
polimerització catiònica i aniònica
dc.subject
lactones
dc.subject
reïnes epoxi
dc.title
Copolimerització de DGEBA amb Àcid de Meldrum i Derivats
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
547
cat
dc.contributor.authoremail
lidia.gonzalez@urv.cat
dc.contributor.director
Mantecón Arranz, Ana
dc.contributor.director
Serra i Albet, Àngels
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
T-1252-2008


Documents

TESI_sa.pdf

14.75Mb PDF

This item appears in the following Collection(s)