Color for Object Detection and Action Recognition

dc.contributor
Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius
dc.contributor.author
Anwer, Rao Muhammad
dc.date.accessioned
2013-08-08T14:06:40Z
dc.date.available
2014-08-09T05:45:06Z
dc.date.issued
2013-04-30
dc.identifier.isbn
9788449038853
dc.identifier.uri
http://hdl.handle.net/10803/120224
dc.description.abstract
Detectar objetos en imágenes es un problema central en el campo de la visión por computador. El marco de detección basado en modelos de partes deformable es actualmente el más eficaz. Generalmente, HOG es el descriptor de imágenes a partir del cual se construyen esos modelos. El reconocimiento de acciones humanas es otro de los tópicos de más interés actualmente en el campo de la visión por computador. En este caso, los modelos usados siguen la idea de conjuntos de palabras (visuales), en inglés bag-of-words, en este caso siendo SIFT uno de los descriptor de imágenes más usados para dar soporte a la formación de esos modelos. En este contexto hay una información muy relevante para el sistema visual humano que normalmente está infrautilizada tanto en la detección de objetos como en el reconocimiento de acciones, hablamos del color. Es decir, tanto HOG como SIFT suelen ser aplicados al canal de luminancia o algún tipo de proyección de los canales de color que también lo desechan. Globalmente esta tesis se centra en incorporar color como fuente de información adicional para mejorar tanto la detección objetos como el reconocimiento de acciones. En primer lugar la tesis analiza el problema de la detección de personas en fotografías. En particular nos centramos en analizar la aportación del color a los métodos del estado del arte. A continuación damos el salto al problema de la detección de objetos en general, no solo personas. Además, en lugar de introducir el color en el nivel más bajo de la representación de la imagen, lo cual incrementa la dimensión de la representación provocando un mayor coste computacional y la necesidad de más ejemplos de aprendizaje, en esta tesis nos centramos en introducir el color en un nivel más alto de la representación. Esto no es trivial ya que el sistema en desarrollo tiene que aprender una serie de atributos de color que sean lo suficientemente discriminativos para cada tarea. En particular, en esta tesis combinamos esos atributos de color con los tradicionales atributos de forma y lo aplicamos de forma que mejoramos el estado del arte de la detección de objetos. Finalmente, nos centramos en llevar las ideas incorporadas para la tarea de detección a la tarea de reconocimiento de acciones. En este caso también demostramos cómo la incorporación del color, tal y como proponemos en esta tesis, permite mejorar el estado del arte.
spa
dc.description.abstract
Recognizing object categories in real world images is a challenging problem in computer vision. The deformable part based framework is currently the most successful approach for object detection. Generally, HOG are used for image representation within the part-based framework. For action recognition, the bag-of-word framework has shown to provide promising results. Within the bag-of-words framework, local image patches are described by SIFT descriptor. Contrary to object detection and action recognition, combining color and shape has shown to provide the best performance for object and scene recognition. In the first part of this thesis, we analyze the problem of person detection in still images. Standard person detection approaches rely on intensity based features for image representation while ignoring the color. Channel based descriptors is one of the most commonly used approaches in object recognition. This inspires us to evaluate incorporating color information using the channel based fusion approach for the task of person detection. In the second part of the thesis, we investigate the problem of object detection in still images. Due to high dimensionality, channel based fusion increases the computational cost. Moreover, channel based fusion has been found to obtain inferior results for object category where one of the visual varies significantly. On the other hand, late fusion is known to provide improved results for a wide range of object categories. A consequence of late fusion strategy is the need of a pure color descriptor. Therefore, we propose to use Color attributes as an explicit color representation for object detection. Color attributes are compact and computationally efficient. Consequently color attributes are combined with traditional shape features providing excellent results for object detection task. Finally, we focus on the problem of action detection and classification in still images. We investigate the potential of color for action classification and detection in still images. We also evaluate different fusion approaches for combining color and shape information for action recognition. Additionally, an analysis is performed to validate the contribution of color for action recognition. Our results clearly demonstrate that combining color and shape information significantly improve the performance of both action classification and detection in still images.
eng
dc.format.extent
102 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat Autònoma de Barcelona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Computer vision
dc.subject
Object recognition
dc.subject.other
Tecnologies
dc.title
Color for Object Detection and Action Recognition
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
68
cat
dc.contributor.authoremail
mahammad@cvc.uab
dc.contributor.director
López Martínez, Antonio M. (Antonio Miguel)
dc.contributor.director
Weijer, Joost van de
dc.embargo.terms
12 mesos
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
B-22954-2013


Documents

ma1de1.pdf

5.329Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)