Anàlisi de sèries temporals mitjançant la predicció amb xarxes neuronals artificials

dc.contributor
Universitat de Barcelona. Departament de Metodologia de les Ciències del Comportament
dc.contributor.author
Rifà Ros, Esteve Xavier
dc.date.accessioned
2011-04-12T13:54:25Z
dc.date.available
2008-11-19
dc.date.issued
2008-10-03
dc.date.submitted
2008-11-19
dc.identifier.isbn
9788469186510
dc.identifier.uri
http://www.tdx.cat/TDX-1119108-114711
dc.identifier.uri
http://hdl.handle.net/10803/2371
dc.description.abstract
La Teoria de Sistemes Dinàmics proporciona eines per a l'anàlisi de Sèries Temporals (ST). Una de les eines proposada es porta a terme mitjançant la predicció no lineal de ST. Amb aquesta tècnica podem extreure algunes de les característiques que aquesta teoria proposa,com la Dimensió d'Immersió (DI) o la Sensibilitat a les Condicions Inicials (SCI). Sugihara y May(1990) han difós un mètode no paramètric que permet fer prediccions mitjançant l'observació de gràfics, procediment que creiem que afegeix una component de subjectivitat. Per superar aquesta dificultat proposem realitzar la presa de decisions mitjançant inferència estadística.<br/><br/>El mètode que s'exposa en aquesta tesi es basa en la predicció no lineal amb Xarxes Neuronals Artificials (XNA). Hem realitzat un seguit d'experiments de simulació per estimar la DI i avaluar la SCI entrenant XNA. En el primer cas es pretén trobar un invariant en la predicció en funció del nombre de components de l'atractor reconstruït, a partir d'una ST observada. Aquest coincideix amb el valor de la DI en el que la predicció ja no millora encara que augmenti el nombre de components. En el segon cas, un cop entrenada la XNA, s'analitza si existeix una disminució significativa de la precisió en la predicció en funció del nombre d'iteracions d'aquesta. Si es dóna aquesta disminució es conclou que la ST és sensible a les condicions inicials. Per tal de provar aquesta nova tècnica que he proposat, he emprat ST simulades (component x del mapa de Hénon i de l'atractor de Rössler) sense soroll i amb dos nivells de soroll afegit. Per al primer conjunt de dades els resultats són consistents amb les nostres hipòtesis. D'altra banda, els resultats per a les dades de l'atractor de Rössler no són tan satisfactoris com era d'esperar en les nostres prediccions.
cat
dc.description.abstract
<I>Researchers from Dynamical Systems Theory have developed tools for the analysis of Time Series (TS) data. Some of these, based on nonlinear forecasting, allow us to estimate some of the characteristics proposed under this approach like embedding dimension or sensitive dependence on initial conditions. Sugihara and May (1990) have shown a nonparametric forecasting method to assess these magnitudes based on the observation of graphics. This process is too subjective in the case where the results are not sufficiently clear. For this reason the goal of this investigation was to find a method of estimation based on statistical inference.<br/>Some simulation experiments have been developed to achieve more objective estimations of the embedding dimension and the assessment of sensitivity to initial conditions. The forecasting of TS in this dissertation has been performed using artificial neural networks. The set of experiments to estimate dimensionality are designed to find an invariant of the correct performance, as a function of the number of components of the reconstructed attractor. To asses the sensitivity to the initial conditions, the experiments will allow us to study the forecasting performance of the best trained network, as a function of the number of iterations.<br/>To test the experiments proposed we have used the Hénon and the Rössler data sets with different noise levels. The results show a good performance of the method used for the Hénon data set. On the other hand, the results for the Rössler data sets are not consistent with our hypotheses. </i>
eng
dc.format.mimetype
application/pdf
dc.language.iso
cat
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Predicció
dc.subject
Xarxes neuronals artificials
dc.subject
Sèries temporals
dc.subject.other
Ciències de la Salut
dc.title
Anàlisi de sèries temporals mitjançant la predicció amb xarxes neuronals artificials
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
159.9
cat
dc.contributor.authoremail
xrifa@ub.edu
dc.contributor.director
Viader Junyent, Manuel
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
cat
dc.identifier.dl
B.5874-2009


Documents

EXRR_TESI.pdf

2.955Mb PDF

This item appears in the following Collection(s)