Elucidating catalytic mechanisms of glycoside hydrolases and transferases by means of ab initio molecular dynamics simulations

Autor/a

Iglesias Fernández, Javier

Director/a

Rovira i Virgili, Carme

Tutor/a

Badia Palacín, Josefa

Data de defensa

2014-09-19

Dipòsit Legal

B 24661-2014

Pàgines

167 p.



Departament/Institut

Universitat de Barcelona. Facultat de Farmàcia

Resum

Carbohydrates play a central role in transport and storage of energy and as molecular building blocks. Additionally, glycoconjugates, specifically glycoproteins and glycolipids, are important components of cell surfaces and the extracellular environment that mediate cellular and molecular interactions. Defects in glycosylation are associated with human diseases while the ability of glycans to modulate immune responses leads to them playing a critical role in susceptibility and resistance to pathogens. This huge amount of glycan structures requires the existence of a diverse group of degrading and remodelling enzymes: glycoside hydrolases (GHs) and glycoside transferases (GTs). GHs and GTs are highly specific enzymes responsible of the hydrolysis (GHs) and formation (GTs) of glycosidic bonds in carbohydrates. They are responsible for the modification of polysaccharides and glycoconjugates involved in numerous biological processes such as pathogenesis mechanisms, cell-cell recognition and polysaccharide degradation for biofuel processing. Knowledge of their enzymatic mechanism at a molecular level is crucial to understand how carbohydrates are assembled/degraded in organisms, as well as in developing new drugs. The detailed characterization of the transition state of the chemical reaction in which they participate, for instance, is key for the development of TS-analog inhibitors, which are known to be very efficient. In recent years, our group has investigated the implications of the conformational changes on the substrate during catalysis in several GHs and has related these changes with the conformations that can be sampled by a single sugar unit (e.g. glucose). This was analyzed by adapting sugar puckering coordinates as collective variables in ab initio metadynamics simulations. These studies are having a significant impact not only in the theoretical community but also in biochemistry and biophysics, because of the possibility to predict substrate catalytic itineraries for GHs. In this thesis, we extend these analyses to other sugar molecules to verify the proposed catalytic itineraries and also to GH inhibitors and sugar oxocarbenium ions to gain insights into transition state mimicry. Unlike GHs, known to operate by means of a double displacement mechanism, the reaction mechanism of retaining GTs is controversial. Both a two-step mechanism (by analogy to retaining glycoside hydrolases) and a one-step mechanism have been proposed and studied by means of quantum mechanics / molecular mechanics (QM/MM) simulations. Here, we applied this methodology to elucidate the catalytic mechanism of an engineered glycoside hydrolase and a glycoside transferase, giving support for a front-face single displacement mechanism.


Los azúcares presentan una gran variabilidad estructural que es aprovechada por los diferentes organismos para realizar una multitud de procesos biológicos, que incluyen el almacenamiento de energía, el reconocimiento y la señalización celular. Las glicosil hidrolasas y glicosil transferasas son las enzimas responsables de la hidrólisis y síntesis, respectivamente, de estos biopolímeros y por lo tanto están presentes en una gran variedad de procesos celulares. Las técnicas de modelado molecular permiten analizar estos procesos biológicos, como por ejemplo la reacción de formación de un enlace entre azúcares, a un nivel atomístico. De esta forma, se pueden describir los cambios conformacionales que se producen en el sustrato al unirse a la enzima, identificar el estado de transición de la reacción química y determinar otros aspectos fundamentales de la catálisis enzimática.

Paraules clau

Glúcids; Glúcidos; Glucides; Catàlisi; Catálisis; Catalysis; Dinàmica molecular; Dinámica molecular; Molecular dynamics; Enzims; Enzimas; Enzymes

Matèries

577 - Bioquímica. Biologia molecular. Biofísica

Àrea de coneixement

Ciències de la Salut

Nota

Programa de Doctorat de Biotecnologia

Documents

JIF_THESIS.pdf

5.514Mb

 

Drets

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Aquest element apareix en la col·lecció o col·leccions següent(s)