Single molecule studies in a temperature-jump optical trap

Autor/a

Lorenzo Ros, Sara de

Director/a

Ritort Farran, Fèlix

Tutor/a

Ritort Farran, Fèlix

Fecha de defensa

2015-01-23

Depósito Legal

B 7455-2015

Páginas

154 p.



Departamento/Instituto

Universitat de Barcelona. Departament de Física Fonamental

Resumen

In the field of biophysics, the study of the thermodynamic characteristics of biomolecules, such as DNA, RNA or proteins, allows us to understand more about the building blocks of life. The thermodynamic characterization of the biomolecule gives us clues as to their functions and capabilities inside every living organism. The thermodynamic characterization of nucleic acids describes how temperature affects the stability and the structure of double stranded DNA. The melting temperature of DNA (T(M)) is defined as the temperature at which half of the DNA strands in a bulk solution experiment are in the double stranded DNA (dsDNA) or random coil configuration and half of the DNA are in the single-stranded DNA (ssDNA) configuration. Using T(M), it has been possible to experimentally determine the thermodynamic parameters of Delta-G, Delta-H and Delta-S. Viceversa, when the thermodynamic parameters of a given nucleic acid sequence are known, the TM can be predicted. This effect has important applications for biomolecule techniques such as PCR (Polymerase chain reaction) or sequencing. Traditionally thermodynamic properties of DNA have been determined using bulk techniques such as calorimetry or UV absorbance. In both cases the melting temperature has been determined by changing the temperature or pH of the entire sample. Over the past two decades single molecule force spectroscopy has been established as a powerful, accurate and bulk-complementary method of characterizing the thermodynamics of nucleic acids. Optical trapping is an experimental technique which allows force to be exerted on a micrometric particle by using the radiation pressure of light. The miniTweezers (mT) is the newest generation of optical tweezers instruments. This instrument can be used to exert and measure forces in a range between 1-200 pN and has unprecedented resolution (0.1 pN in force an around 1 nm in distance) with very high thermal and noise stability. Optical trapping is very useful in the field of molecular biology because it allows forces to be exerted on single biomolecules bonded to the micrometric particle. This technique is used to carry out pulling experiments on single molecules allowing us to study the mechanical, thermodynamic and kinetic properties of the molecule. Mechanical melting or unzipping is a process that consists of pulling apart the two strands of the dsDNA until the base pairs are disrupted and the molecule converts into ssDNA. In this case, and in contrast to other techniques, force, rather than temperature or pH, is used to open the molecule. Past experiments have shown that better resolution can be obtained using single molecule techniques than can be obtained using bulk experiments. Although force unzipping provides a direct estimation of Delta-G at room temperature, extracting the value of TM always requires the determination of the Delta-H and Delta-S contributions and until now has not been reliable accomplished.


En el campo de la biofísica, el estudio de las características termodinámicas de las biomoléculas, como ADN, ARN o proteínas, permite conocer más sobre los componentes básicos de la vida. La caracterización termodinámica de las biomoléculas nos proporciona pistas sobre sus funciones y capacidades dentro de un organismo vivo. La caracterización termodinámica de los ácidos nucleicos describe como la temperatura afecta la estabilidad y la estructura de la doble cadena de ADN. La temperatura de melting del ADN (TM) se define como la temperatura a la cual la mitad de las moléculas de ADN disueltas en una solución se encuentran en configuración de doble cadena (dsDNA) y la otra mitad se encuentra en la configuración de cadena individual (ssDNA). Conociendo el valor de la TM es posible determinar experimentalmente los parámetros termodinámicos: Delta-G, Delta-H y Delta-S. Viceversa, cuando los parámetros termodinámicos de la secuencia de un ácido nucleico es conocido, la TM puede ser predecida. Este efecto tiene importantes aplicaciones en técnicas de biología molecular como PCR (en inglés Polymerase chain reaction) o secuenciación. Tradicionalmente las propiedades termodinámicas del ADN han sido medidas utilizando técnicas de volumen como calorimetría o absorbancia de UV. En ambos casos la TM ha sido calculada modificando la temperatura o el pH de toda la muestra. En las pasadas dos décadas, las técnicas de espectroscopía de fuerzas sobre moléculas individuales, han sido reconocidas como técnicas de un gran valor y precisión cuyos resultados en el estudio de la caracterización termodinámica pueden ser considerados perfectamente complementarios a los medidos en técnicas de volumen. La técnica de atrapamiento óptico es una técnica experimental la cual permite ejercer fuerza sobre una partícula micrométrica utilizando la presión de radiación de la luz. Las minipinzas (en inglés minitweezers) es una nueva generación a los instrumentos de pinzas ópticas. Este instrumento puede ser usado para ejercer y medir fuerzas en un rango de entre 1-200pN y con una resolución en fuerza y distancia sin precedentes. El atrapamiento óptico es muy útil en el campo de la biología molecular permitiendo ejercer fuerzas sobre biomoléculas individuales enganchadas. Esta técnica es usada para llevar a cabo experimentos de estiramiento sobre moléculas individuales permitiendo el estudio de las propiedades mecánicas, termodinámicas y cinéticas de la molécula bajo estudio. El experimento de unzipping o melting mecánico es un proceso que consiste en separar las dos hebras de la dsDNA hasta que los enlaces entre los pares de bases complementarios son deshechos y la molécula se convierte en ssDNA. En este caso la fuerza es usada como medio para abrir la molécula, en vez de la temperatura o el pH como en otras técnicas. Pasados experimentos han mostrado que podemos obtener mejor resolución utilizando técnicas de moléculas individuales que utilizando técnicas en volumen. Aunque la fuerza de unzipping nos proporciona una estimación directa de Delta-G a temperatura ambiente, para poder extraer el valor de TM requiere conocer las contribuciones de Delta-H y Delta-S y hasta ahora no ha sido posible. Para llevar a cabo una completa caracterización termodinámica de ácidos nucleicos es importante conocer ambas magnitudes (Fuerza y Temperatura). El mejor camino para hacer este análisis es llevar a cabo experimentos de unzipping sobre moléculas individuales de ADN a diferentes temperaturas. Por ello hemos desarrollado un novedoso instrumento de pinzas ópticas con un controlador de temperatura que nos permite modificar y cambiar la temperatura de manera local y rápida. Se ha usado un específico láser calentador con una longitud de onda con una alta absorción en agua que permite cubrir un amplio rango de temperaturas. Este instrumento nos permite grabar diversas curvas de fuerza/extensión para una molécula individual a varias temperaturas con una buena estabilidad térmica y mecánica. Este diseño tiene ciertas mejoras para reducir la convección, el cual ha sido un grave problema en previos equipos calentados a través de un láser. Este equipo ha sido usado para hacer experimentos de ADN, lo que nos ha permitido hacer un análisis promediado de Delta-G, Delta-S y Delta-H entre pares de bases en un rango de temperatura entre 5ºC y 50ºC.

Palabras clave

Biofísica; Biophysics; Termodinàmica; Termodinámica; Thermodynamics; ADN; DNA; Temperature jump; Salt de temperatura; Salto de temperatura; Optical tweezers; Pinza óptica; Pinça òptica

Materias

53 - Física

Área de conocimiento

Ciències Experimentals i Matemàtiques

Documentos

SdLR_PhD_THESIS.pdf

7.899Mb

 

Derechos

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Este ítem aparece en la(s) siguiente(s) colección(ones)