A cotangent bundle Hamiltonian tube theorem and its applications in reduction theory

Author

Teixidó Roman, Miguel

Director

Rodríguez Olmos, Miguel Andrés

Date of defense

2015-03-27

Legal Deposit

B 13216-2015

Pages

144 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV

Abstract

The Marle-Guillemin-Sternberg (MGS) model is an extremely important tool for the theory of Hamiltonian actions on symplectic manifolds. It has been extensively used to prove many local results both in symplectic geometry and in symmetric Hamiltonian systems theory. It provides a model for a tubular neighborhood of a group orbit and puts in normal form the group action and the symplectic structure. The main drawback of the MGS model is that it is not explicit. Only it existence and main properties can be proved. Moreover, for cotangent bundles, this model does not respect the natural fibration. In the first part of the thesis we build an MGS model specially adapted to the cotangent bundle geometry. This model generalizes previous results obtained by T. Schmah for orbits with fully-isotropic momentum. In addition, our construction is explicit up to the integration of a differential equation on G. This equation can be easily solved for the groups SO(3) or SL(2), hence giving explicit symplectic coordinates for arbitrary canonical actions of these groups on any cotangent bundle. In the second part of the thesis we apply this adapted MGS model to describe the structure of the symplectic reduction of a cotangent bundle. We show that the base projection of any momentum leaf is a Whitney stratified space. Moreover, we can refine the orbit-type stratification of the symplectic reduced space so that each piece is a fibered space. We prove that each of those pieces is endowed with a constant rank presymplectic form and that there is always one unique piece which is open and dense. Furthermore, this maximal piece is symplectomorphic to a vector subbundle of a certain cotangent bundle.


El model de Marle-Guillemin-Sternberg (MGS) és una eina extremadament important per la teoria de les accions Hamiltonianes en varietats simplèctiques. Ha estat utilitzada per provar molts resultats te tipus local tant en geometria simplèctica com en la teoria de sistemes Hamiltonians simètrics. Proporciona un model per un entorn tubular de una òrbita de la acció de forma que fica en forma normal tant l'acció del grup com l'estructura simplèctica. El principal problema del model MGS és que no és explícit. Només es poden provar la seva existència i les seves propietats principals. Per altra banda, en el cas de que la varietat sigui un fibrat cotangent la el model MGS no respecta la fibració natural. En la primera part de la tesis construïm un model MGS especialment adaptat a la geometria dels fibrats cotangents. Aquest model generalitza els resultats obtinguts per T. Schmah per òrbites amb moment completament isotròpic. Addicionalment, la nostra construcció és explicita excepte per la integració d'una equació diferencial sobre el grup G. Aquesta equació pot ser solucionada de forma explícita per els grups SO(3) o SL(2), per tant podem donar explícitament coordenades simplèctiques per a accions arbitraries d'aquests grups sobre qualsevol fibrat cotangent. En la segona part de la tesis apliquem aquest model MGS cotangent per descriure l'estructura de les reduccions simplèctiques de fibrats cotangents. Mostrem que la projecció sobre la base de una fulla de moment és un espai estratificat de Whitney. També podem refinar l'estratificació de l'espai simplèctic reduït de forma que cadascuna de les peces és un espai fibrat. Demostrem que cadascuna d'aquestes peces està dotada d'una forma pre-simplèctica de rang constant i que sempre hi ha una única peça que es oberta i densa en l'espai reduït. A més aquesta peca maximal és simlpectomorfa a un subfibrat vectorial de un cert fibrat cotangent.

Keywords

Cotangent bundles; Normal forms; Stratified spaces; Singular reduction; Momentum maps

Subjects

514 - Geometry

Documents

TMTR1de1.pdf

1.903Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/3.0/es/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/3.0/es/

This item appears in the following Collection(s)