Eigenvalue varieties of abelian trees of groups and link-manifolds

dc.contributor
Universitat Autònoma de Barcelona. Departament de Matemàtiques
dc.contributor.author
Malabre, François
dc.date.accessioned
2015-09-16T07:42:02Z
dc.date.available
2015-09-16T07:42:02Z
dc.date.issued
2015-07-20
dc.identifier.isbn
9788449055232
cat
dc.identifier.uri
http://hdl.handle.net/10803/308323
dc.description.abstract
L’A-polinomi d’un nus en S3 és un poliomi de dues variables obtingut projectant la varietat de SL2C-caràcters de l’exterior del nus sobre la varietat de caràcters del grup perifèric. Distingeix el nus trivial i detecta alguns pendents a la vora de superfícies essencials dels exteriors de nus. El concepte de A-polinomi va ser generalitzat a les 3-varietats amb vores tòriques no connexes; una 3-varietat M amb n tors de vora produeix un sub-espai algebraic E(M) de C2n anomenat varietat de valors propis de M. Té dimensió maximal n i E(M) també detecta sistemes de pendents a les vores de superfícies essencials en M. La varietat de valors propis de M sempre conté una part Ered(M), de dimensió maximal, produïda pels caràcters reductibles. Si M és hiperbòlica, E(M) conté una altra component de dimensió maximal; saber quines altres 3-varietats compleixen això encara és una pregunta oberta. En aquesta tesi, estudiem aquest assumpte per dues famílies de 3-varietats amb vores tòriques i, amb dues tècniques diferents, aportem una resposta positiva en ambdós casos. Primerament, estudiem els enllaços Brunnians en S3, enllaços per els quals tot subenllaç estricte és trivial. Algunes propietats d’aquests enllaços i llur estabilitat sota alguns ompliments de Dehn permet mostrar que, si M és l’exterior d’un enllaç Brunnià no trivial i diferent de l’enllaç de Hopf, E(M) conté una component de dimensió maximal diferent de Ered(M). Aquest resultat s’obté generalitzant la tècnica prèviament utilitzada per els nusos en S3 fent servir el teorema de Kronheimer-Mrowka. Per altre banda, considerem una família de varietats-enllaç, varietats obtingudes com exteriors d’enllaços en esferes d’homologia entera. Les varietats-enllaç tenen sistemes perifèrics estàndards de meridans i longituds i són estables per splicing, l’enganxament de dues varietats-enllaç al llarg de tors perifèrics, identificant el meridià de cada costat amb la longitud oposada. El splicing indueix una noció de descomposició tòrica per les varietatsenllaç i anomenem grafejades les varietats-enllaç que admeten una descomposició tòrica per la qual totes les peces són fibrades de Seifert. Mostrem que, excloent els casos trivials, totes les varietats-enllaç grafejades produeixen una altre component de dimensió maximal en les seves varietats de valors propis. Per aquesta segona demostració, presentem una nova generalització de la varietat de valors propis, que també té en compte tors interns, i que presentem en el context més general d’arbres abelians de grups. Un arbre de grup és abelià quan tots els grups de arestes són commutatius; en aquest cas, definim la varietat de valors propis d’un arbre abelià de grup, una varietat algebraica compatible amb dues operacions naturales sobre els arbres: la fusió i la contracció. Això permet estudiar la varietat de valors propis d’una varietat-enllaç mitjançant les varietats de valors propis de les seves descomposicions tòriques. Combinant resultats generals sobre varietats de valors propis d’arbres abelians de grup i les descripcions combinatòries de les varietats-enllaç grafejades, construïm components de dimensió maximal en les seves varietats de valors propis.
cat
dc.description.abstract
Le A-polynôme d’un noeud dans S3 est un polynôme à deux variables obtenu en projetant la variété des SL2C-caractères de l’extérieur du noeud sur la variété de caractères du groupe périphérique. Il distingue le noeud trivial et détecte certaines pentes aux bords de surfaces essentielles des extérieurs de noeud. La notion de A-polynôme a été généralisée aux 3-variétés à bord torique non connexe ; une 3-variétéM bordée par n tores produit un sous-espace algebrique E(M) de C2n appelé variété des valeurs propres deM. Sa dimension est inférieure ou égale à n et E(M) détecte également des systèmes de pentes aux bords de surfaces essentielles dans M. La variété des valeurs propres de M contient toujours un sous-ensemble Ered(M) produit par les caractères réductibles, et de dimension maximale. Si M est hyperbolique, E(M) contient une autre composante de dimension maximale ; pour quelles autres 3- variétes est-ce le cas reste une question ouverte. Dans cette thèse, nous étudions cette question pour deux familles de 3-variétés à bords toriques et, via deux techniques distinctes, apportons une réponse positive dans ces deux cas. Dans un premier temps, nous étudions les entrelacs Brunniens dans S3, entrelacs pour lesquels tout sous-entrelacs strict est trivial. Certaines propriétés de ces entrelacs, et leur stabilité par certains remplissages de Dehn nous permettent de prouver que, siM est l’extérieur d’un entrelacs Brunnien non trivial et différent de l’entrelacs de Hopf, E(M) contient une composante de dimension maximale différente de Ered(M). Ce résultat est obtenu en généralisant la technique préalablement utilisée pour les noeuds dans S3 grâce au théorème de Kronheimer-Mrowka. D’autre part, nous considérons une famille de variétés-entrelacs, variétés obtenues comme extérieurs d’entrelacs dans des sphères d’homologie entière. Les variétés-entrelacs possèdent des systèmes périphériques standard de méridiens et longitudes et sont stables par splicing, le recollement de deux variétés-entrelacs le long de tores périphériques en identifiant le méridien de chaque coté avec la longitude opposée. Ceci induit une notion de décomposition torique de variété-entrelacs et une telle variété est dite graphée si elle admet une décomposition torique où toutes les pièces sont fibrées de Seifert. Nous montrons que, mis-à-part les cas triviaux, toutes les variétés-entrelacs graphées produisent une autre composante de dimension maximale dans leur variétés des valeurs propres. Pour cette seconde preuve, nous présentons une nouvelle généralisation de la variété des valeurs propres, qui prend également en compte les tores intérieurs, que nous introduisons dans le contexte plus général des arbres abéliens de groupes. Un arbre de groupe est appelé abélien si tous les groupes d’arête sont commutatifs ; dans ce cas, nous définissions la variété des valeurs propres d’un arbre abélien de groupe, une variété algébrique compatible avec deux opérations naturelles sur les arbres : la fusion et la contraction. Ceci permet d’étudier la variété des valeurs propres d’une variété-entrelacs à travers les variétés des valeurs propres de ses décompositions toriques. En combinant des résultats généraux sur les variétés des valeurs propres d’arbres abéliens de groupe et les descriptions combinatoires des variétés-entrelacs graphées, nous contruisons des composantes de dimension maximale dans leur variétés des valeur propres.
fra
dc.description.abstract
The A-polynomial of a knot in S3 is a two variable polynomial obtained by projecting the SL2C-character variety of the knot-group to the character variety of its peripheral subgroup. It distinguishes the unknot and detects some boundary slopes of essential surfaces in knot exteriors. The notion of A-polynomial has been generalized to 3-manifolds with non-connected toric boundaries; ifM is a 3-manifold bounded by n tori, this produces an algebraic subset E(M) of C2n called the eigenvalue variety of M. It has dimension at most n and still detects systems of boundary slopes of surfaces in M. The eigenvalue variety of M always contains a part Ered(M) arising from reducible characters and with maximal dimension. If M is hyperbolic, E(M) contains another topdimensional component; for which 3-manifolds is this true remains an open question. In this thesis, this matter is studied for two families of 3-manifolds with toric boundaries and, via two very different technics, we provide a positive answer for both cases. On the one hand, we study Brunnian links in S3, links in the standard 3-sphere for which any strict sublink is trivial. Using special properties of these links and stability under certain Dehn fillings we prove that, if M is the exterior of a Brunnian link different from the trivial link or the Hopf link, then E(M) admits a top-dimensional component different from Ered(M). This is achieved generalizing the technic applied to knots in S3, using Kronheimer-Mrowka theorem. On the other hand, we consider a family of link-manifolds, exteriors of links in integerhomology spheres. Link-manifolds are equipped with standard peripheral systems of meridians and longitudes and are stable under splicing, gluing two link-manifolds along respective boundary components, identifying the meridian of each side to the longitude of the other. This yields a well-defined notion of torus decomposition and a link-manifold is called a graph link-manifold if there exists such a decomposition for which each piece is Seifert-fibred. Discarding trivial cases, we prove that all graph link-manifolds produce another top-dimensional component in their eigenvalue variety. For this second proof, we propose a further generalization of the eigenvalue variety that also takes into account internal tori and this is introduced in the broader context of abelian trees of groups. A tree of group is called abelian if all its edge groups are commutative; in that case, we define the eigenvalue variety of an abelian tree of groups, an algebraic variety compatible with two natural operations on trees: merging and contraction. This enables to study the eigenvalue variety of a link-manifold through the eigenvalue varieties of its torus splittings. Combining general results on eigenvalue varieties of abelian trees of groups with combinatorial descriptions of graph link-manifolds, we construct top-dimensional components in their eigenvalue varieties.
eng
dc.format.extent
157 p.
cat
dc.format.mimetype
application/pdf
dc.language.iso
eng
cat
dc.publisher
Universitat Autònoma de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Varietats de caracters
cat
dc.subject
Variedades de caracteres
cat
dc.subject
Character variety
cat
dc.subject
Nusos-enllaços
cat
dc.subject
Nudos-enlaces
cat
dc.subject
Knots-links
cat
dc.subject
Descomposició JSJ
cat
dc.subject
Descomposición JSJ
cat
dc.subject
JSJ descomposition
cat
dc.subject.other
Ciències Experimentals
cat
dc.title
Eigenvalue varieties of abelian trees of groups and link-manifolds
cat
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
51
cat
dc.contributor.authoremail
francois.malabre@gmail.com
cat
dc.contributor.director
Boileau, Michel
dc.contributor.director
Porti Piqué, Joan
dc.embargo.terms
cap
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
B-24105-2015


Documentos

fm1de1.pdf

900.3Kb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)