Multifunctional metamaterial designs for antenna applications

dc.contributor
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.contributor.author
Ferrer González, Pere Josep
dc.date.accessioned
2015-10-13T10:50:05Z
dc.date.available
2015-10-13T10:50:05Z
dc.date.issued
2015-07-17
dc.identifier.uri
http://hdl.handle.net/10803/312841
dc.description.abstract
Over the last decades, Metamaterials (MTMs) have caught the attention of the scientific community. Metamaterials are basically artificially engineered materials which can provide unusual electromagnetic properties not present in nature. Among other novel and special EM applications, such as the negative refraction index (NRI) application, Metamaterials allow the realisation of perfect magnetic conductors (PMCs), which are of interest in the development of smaller and more compact antenna systems composed of one or more antennas. In this context, this thesis is focused on investigating the feasibility of using metamaterial structures to improve the performance of antennas operating at the microwave frequencies. The metamaterial design process is challenging because metamaterials are primarily composed of resonant particles, and hence, their response is frequency dependent due to the dispersive behaviour of their effective medium properties. However, one can take advantage of this situation by exploiting those strange properties while finding other antenna applications for such metamaterial designs. For the case of the PMC applications, the relative magnetic permeability values are negative, because they are found just above the resonance of the metamaterial. This thesis investigates several antenna applications of artificial magnetic materials (AMMs). The initial work is devoted to the design of a spiral resonator (SR) AMM slab to realise a low profile reflector dipole antenna by taking advantage of its PMC response. The spiral resonator has been used due to its reduced unit cell size when compared to other metamaterial resonators, leading to a more homogeneous metamaterial structure. In addition, a bidirectional PMC spacer has been applied to produce a small and compact antenna system composed of two monopole antennas, although the concept may be applied to other antenna types. A third application as an AMC reflector are the transpolarising surfaces, where the incident electric field plane wave is reflected at a polarisation rotation angle of 90 degrees. Such surfaces may be of interest to produce high cross-polar response reflecting devices, like the modified trihedral corner reflector that has been tested for polarimetric synthetic aperture radar (PolSAR) purposes. Another application of the SR AMM metamaterial is the patch antenna with a magneto-dielectric loading. The relative magnetic permeability of the AMM metamaterial has values over the unity in the frequency band below the resonance. As a consequence, the patch antenna can be miniaturised without reducing its bandwidth of operation, in contrast to a typical high dielectric permittivity substrate. Finally, the SR AMM metamaterial also presents values of relative magnetic permeability between zero and the unity (MNZ). In such a case, the SR AMM metamaterial has been applied as an MNZ cover of a slot antenna, devoted to increasing the broadside radiated power and directivity of the antenna.
eng
dc.description.abstract
En las últimas décadas, los Metamateriales (MTMs) han captado la atención de la comunidad científica internacional. Los metamateriales son básicamente materiales artificiales diseñados que tienen propiedades electromagnéticas inusuales no presentes en la naturaleza. Aparte de otras aplicaciones innovadoras en electromagnetismo, como la posibilidad de un material con un índice de refracción negativo (NRI), los metamateriales permiten realizar los conductores magnéticos perfectos (PMCs), que podrían ser de gran utilidad para implementar sistemas de múltiples antenas más pequeños y compactos. En este contexto, esta tesis se centra en investigar el uso de diferentes diseños de metamateriales para mejorar las prestaciones de sistemas radiantes o antenas que trabajan a frecuencias de microondas. El proceso de diseño de los metamateriales es complicado, porque los metamateriales están compuestos de resonadores magnéticos, y consecuentemente, su respuesta varía con la frecuencia a causa de la naturaleza dispersiva de sus parámetros de medio efectivo. No obstante, se pueden aprovechar estas propiedades extrañas para encontrar otras aplicaciones interesantes en antenas. Para el caso de aplicaciones como PMC, el valor de la permeabilidad magnética relativa toma principalmente valores negativos, ya que se encuentran después de la resonancia del metamaterial. Esta tesis realiza el estudio de diferentes aplicaciones de antenas con materiales magnéticos artificiales (AMMs). Primeramente, se ha diseñado un metamaterial AMM compuesto de resonadores en espiral (SRs), que se aplica para realizar un reflector de perfil bajo con una antena dipolo, aprovechando la respuesta PMC que proporciona el metamaterial. Se han utilizado resonadores en forma de espiral porque tienen una celda unidad más reducida al compararla con la de otros resonadores metamaterials, produciendo así una estructura metamaterial más homogénea. Además, un diseño PMC bidireccional ha permitido diseñar un sistema pequeño y compacto de dos antenas monopolo, aunque este concepto se puede aplicar a otros tipos de antenas. Una tercera aplicación como reflector AMC es el de pantalla transpolarizadora, dónde una onda eléctrica plana incidente es reflejada con un ángulo de rotación de 90 grados. Estas pantallas pueden servir para realizar dispositivos reflectores con una respuesta cruzada alta, como pasa con un triedro modificado que se ha probado con éxito en aplicaciones como calibrador de radar de apertura sintética polarimétrico (PolSAR). El metamaterial SR AMM también se ha utilizado como substrato magneto-dieléctrico de una antena impresa o patch. La permeabilidad magnética relativa de este metamaterial toma valores más grandes que la unidad en el rango de frecuencias por debajo de la resonancia. Por esto, la antena patch se puede miniaturizar sin reducir sus prestaciones de ancho de banda de operación, caso contrario a cuando se utilizan substratos de permitividad dieléctrica alta. Finalmente, el metamaterial SR AMM también toma valores de permeabilidad magnética relativa entre cero y la unidad (MNZ). En este caso, el metamaterial SR AMM se ha aplicado como un superestrato MNZ de una antena de ranura o slot, con la intención de incrementar la potencia radiada y la directividad de la antena.
spa
dc.format.extent
189 p.
cat
dc.format.mimetype
application/pdf
dc.language.iso
eng
cat
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.title
Multifunctional metamaterial designs for antenna applications
cat
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
531/534
cat
dc.subject.udc
537
cat
dc.subject.udc
621.3
cat
dc.contributor.director
González Arbesú, José María
dc.contributor.director
Romeu Robert, Jordi
dc.embargo.terms
cap
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documentos

TPJFG1de1.pdf

7.420Mb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)