Universitat Politècnica de Catalunya. Departament d'Enginyeria Química
This Thesis reports the fabrication and characterization of interfaces based on conducting polymers (CPs), which are designed with at least one dimension in the nanometric scale, for bioapplications such as scaffolds for promoting electro-active tissue regeneration, drug delivery systems or passive ion transport membranes. In particular, the development of such platforms is addressed to overcome CPs limitations without compromising their electrochemical and electrical properties. Special attention is placed on evaluating those properties that are known to determine cell-biointerface interactions (i.e. surface chemistry, topology and mechanical features) in addition to biocompatibility and biodegradability. Concretely, CP-based biointerfaces are designed as ultra-thin free-standing nanomembranes (FsNM), fibrous substrates or electropolymerized interfaces. In the first approach, spin-coating is used to prepare robust and flexible nanofilms by blending a chemically synthesized PTh derivative (P3TMA), which is soluble in THF, CHCl3 and DMSO, with an insulating polymer (i.e. polyester (PE44) or thermoplastic polyurethane (TPU)), which is crucial to provide mechanical integrity to P3TMA. Fully characterization of the resulting FsNM reveals that both systems, P3TMA:PE44 and TPU:P3TMA interfaces, retain features coming from each of the homopolymers: electrochemical activity and electrical response on the one hand, and biodegradability on the other. Moreover, they behave as potent cellular biointerfaces because they are biocompatible, electrobioactive and adequate substrates for type I collagen adsorption. Secondly, P3TMA is further used to obtain hybrid fibrous scaffolds. In this case, polylactic acid (PLA) and a poly-urea derivative (PEU-co-PEA) are chosen as biodegradable polymers. After the optimization of the electrospinning process, a study is carried out to investigate the electrochemical properties (electroactivity and electrostability) of both PLA:P3TMAand PEU-co-PEA:P3TMA hybrid samples, and their bioapplication. P3TMA displays a good doping level, and retains its electrochemical features in the hybrid fibrous samples, which are electroactive and electrostable. Again, P3TMA improves the cellular proliferation of cells cultured on the hybrid fibrous interfaces, thus enabling their use as suitable scaffolds for cell regeneration. Furthermore, PLA:P3TMA 2:1 fibrous interface can perform as a drug-delivery platform since it combines suitable wetting behaviour, biocompatibility and good electrical features. Drug-loaded matrices with TCS, CHX or CIP are antibacterial active, and thus the drug is feasible to be released from the fibrous biointerface by electrical stimulation. Finally, CP-based biointerfaces are prepared by electrochemical polymerization adopting specific strategies. Hence, Omp2a, an outer membrane protein which forms trimeric pores, is entrapped in a poly(N-methylpyrrole) (PNMPy) matrix, preserving its native structure, which ensures its operative and functional state as passive ion channel. Similarly, a bioactive platform is prepared based on the co-electropolymerization of a specially synthesized bis-thienyl monomer, AzbT, which contains carboxyl and Schiff base functionalities, and 2,2':5',2''-therthiophene (Th3). Such interfaces display good optical and electrochemical properties depending on the AzbT:Th3 molar ratio in the electrpolymerization medium. Furthermore, the copolymer with the highest AzbT content shows enhanced cell adhesion and proliferation results, with cells cultured on their surface homogeneously spread. Such behaviour has been interpreted as the combination effect of the minor release of harmful Th3 monomer entrapped into the polymeric matrix and the presence of the AzbT's distinctive groups.
Esta Tesis reporta la fabricación y caracterización de nanointerfaces compuestas por polímeros conductores (CPs) diseñadas para bioaplicaciones. En particular, el desarrollo de dichas plataformas pretende superar las limitaciones de los CPs sin comprometer sus propiedades electroquímicas y eléctricas. Se ha prestado especial atención en evaluar aquellas características que influyen en las interacciones establecidas entre la biointerfaz y sistemas celulares (i.e. propiedades superficiales, morfológicas y mecánicas), además de determinar su biocompatiblidad y biodegradabilidad. Concretamente, las biointerfaces se han diseñado como nanomembranas, sustratos fibrilares o interfaces obtenidas medicante electropolimerización.La primera estrategia emplea la técnica del spin-coating para preparar nanomembranes free-standing (FsNM) flexibles y robustas combinando un derivado de politiofeno sintetizado químicamente (P3TMA), soluble en THF, CHCl3 y DMSO, con un biopolímero convencional (i.e. polyester (PE44) o poliuretano (TPU)). La presencia del polímero aislante es crucial para dotar al CP de integridad mecánica. La caracterización de las FsNM revela que ambos sistemas (P3TMA:PE44 o TPU:P3TMA) retienen las características distintivas de los homopolímeros: actividad electroquímica y eléctrica por un lado, y biodegradabilidad por el otro. Además, muestran elevada biocompatibilidad, electrobioactividad y adecuada respuesta a la adsorción de colágeno tipo I.A continuación, el P3TMA se utiliza para obtener scaffolds fibrilares híbridos combinándolo con poliláctico (PLA) o un derivado de la poliurea. Tras la optimización de los parámetros de síntesis de las fibras (electrospinning), las propiedades electroquímicas (electroactividad y electroestabilidad) de los dos sistemas (PLA:P3TMA y PEU-co-PEA:P3TMA) y su bioaplicación han sido estudiadas. El P3TMA presenta un buen nivel de dopaje, y mantiene una buena respuesta electroquímica (es electroactivo y electroestable) en los sistemas híbridos. De nuevo, la presencia del CP mejora la proliferación celular, lo que permite usar estas biointerfaces como soporte para el crecimiento celular. Asimismo, el sistema PLA:P3TMA puede actuar como plataforma de liberación de medicamentos ya que combina biocompatiblidad, buenas características eléctricas y una apropiada humectabilidad. Las matrices cargadas con medicamentos bactericidas (TCS, CHX o CIP) son activas, y por lo tanto resultarían interfaces adecuadas para la liberación controlada de fármacos mediante estimulación eléctrica. Finalmente, varios sistemas basados en CP han sido diseñados mediante polimerización electroquímica adoptando estrategias concretas para mejorar su aplicación biotecnológica. En primer lugar, Omp2a, una proteína de membrana que forma poros triméricos, se ha inmovilizado en una matriz de poli(N-metilpirrol) (PNMPy). Este método preserva su estructura nativa y asegura su estado operativo y funcional como canal iónico pasivo. De manera similar, una segunda plataforma bioactiva se ha desarrollado mediante la copolimerización de un mónomero que contiene funcionalidades específicas (carboxilos y bases de Schiff) con 2,2’:5’,2’’-therthiophene (Th3). Dichas interfaces presentan buenas propiedades ópticas y electroquímicas en función de la ratio molar de AzbT:Th3 en el medio de polimerización. También, la mejor respuesta de adhesión y proliferación celular se obtiene para el copolímero con el mayor contenido de AzbT, interfaz sobre la cual las células de distribuyen de manera homogénea y completamente estiradas. Dicho comportamiento se ha interpretado como resultado del efecto combinado de (i) una menor liberación del monómero tóxico Th3 de la matriz P(AzbT:Th3) y (ii) una mayor presencia de los grupos distintivos del AzbT.Palabras clave: polímero conductor, compuesto biodegradable, scaffold fibrilar, ingeniería de tejidos, sistemas de liberación de fármacos, biointerfaces funcionales, polimerización electroquímica.
Conducting polymer; Biodegradable blend; Nanomembranes; Fibrous scaffolds; Tissue engineering; Drug-delivery; Funtional biointerfaces; Electrochemical polymerization
54 - Chemistry; 620 - Materials testing. Commercial materials. Economics of energy; 66 - Chemical technology. Chemical and related industries. Metallurgy