Universitat de Barcelona. Departament d'Astronomia i Meteorologia
Gradual SEP events is one of the greatest hazards in space environment, particularly for the launch and operation of spacecraft and for manned exploration. Predictions of their occurrence and intensity are essential to ensure the proper operation of technical and scientific instruments. However, nowadays there is a large gap between observations and models these events that can lead to predictions. This work focuses on the modelling of SEP events, particularly, on the influence of the observer's relative position and of the shock strength, on the simulated SEP flux profiles. Part I of the thesis, deals with 3D MHD simulations of interplanetary shocks. We have studied the potential relevance of the latitude of the observer on the evolution of the strength of the shock and its influence on the injection rate of shock-accelerated particles; thus, on the resulting flux profiles. It is the first time that such dependence on the latitude is quantified from the modelling of SEP events, because most of the codes used so far to simulate interplanetary shocks are not 3D codes or they have been applied to near-ecliptic events. To study the influence of the latitude of the observer and the strength of the shock in the SEP flux profiles, we have simulated the propagation of two shocks (slow and fast) up to several observers placed at different positions with respect to the nose of the shock. We have calculated the evolution of the plasma and magnetic field variables at the cobpoint, and we have derived the injection rate of shock-accelerated particles and the resulting proton flux profiles to be measured by each observer. We have discussed how observers located at different positions in space measure different SEP profiles, showing that variations on the latitude may result in intensity changes of up to one order of magnitude. In Part II, we have used a new shock-and-particle model to simulate the 1 March 1979 SEP event that was observed by three different spacecraft. These spacecraft were positioned at similar radial distances but at significantly different angular positions, with respect to the associated solar source location. This particular scenario allows us to test the capability of the model to study the relevance of longitudinal variations in the shape of the intensity flux profiles, and to derive the injection rate of shock-accelerated particles. Despite the interest of multi-spacecraft events and due to the restrictions that they impose, this is just the second multi-spacecraft scenario for which their shock-particle characteristics have been modelled. For the first time, a simulation of a propagation of an interplanetary shock has simultaneously reproduced the time shock arrival and the relevant plasma jumps across the shock at three spacecraft. We have fitted the proton intensities at the three spacecraft for different energy channels, and we have derived the particle transport conditions in space. We have quantified the efficiency of the shock at injecting particles in its way toward each observer, and we have discussed the influence of the observer's relative position on the injection rate of shock-accelerated particles. We have concluded that in this specific event the evolution of the injection rate can not be completely explained in terms of the normalized velocity jump. The work performed during this thesis shows that the injection rate of shock-accelerated particles and their resulting flux profiles depend both on the latitude and on the longitude of the observer. This implies that more SEP events have to be modelled in order to quantify this conclusion on firm ground.
Els esdeveniments graduals de partícules solars energètiques (SEP) són un risc important per als astronautes i l’ instrumentació espacial. És per això que són necessàries eines de predicció de la intensitat i l'ocurrència de les tempestes de partícules solars per a garantitzar l'operativitat del material tècnic i científic embarcat. Existeix un gran buit, però, entre les prediccions del models actuals (per a ús en meteorologia espacial), i les observacions d'esdeveniments SEP. El treball realitzat durant aquesta tesi doctoral es centra en diversos aspectes de la simulació d'esdeveniments SEP. En particular, analitzem la influència de la posició relativa de l'observador i de la força del xoc en els perfils de flux derivats del nostre model combinat xoc-i-partícula. A partir de simulacions 3D, obtenim que el ritme d'injecció de partícules accelerades pel xoc depèn de la longitud de l'observador i demostrem, per primera vegada, que també depèn de la seva latitud. I es mostra que, conseqüentment, els perfils de flux detectats poden variar en un ordre de magnitud depenent de la connexió magnètica de l'observador amb el front del xoc. A més a més, presentem una simulació 2D d'un esdeveniment solar vist per tres sondes interplanetàries, pel qual s'ha ajustat, per primera vegada, l'arribada del xoc i els perfils de intensitat dels protons de diferents canals d'energia observats per cadascuna de les sondes. Així mateix, hem ajustat els salts en velocitat i camp magnètic a l'arribada del xoc, hem derivat les condicions de transport de les partícules i hem quantificat l'eficiència del xoc com a injector de partícules. La conclusió final del treball és que els futurs models de predicció d'esdeveniments SEP per a meteorologia espacial han de tenir en compte la geometria global de l'escenari solar-interplanetari.
Vent solar; Viento solar; Solar wind; Partícules interplanetàries; Partículas interplanetarias; Iinterplanetary particles
52 - Astronomia. Astrofísica. Investigació espacial. Geodèsia
Ciències Experimentals i Matemàtiques
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.