Graph-based techniques for compression and reconstruction of sparse sources

Autor/a

Ramírez Jávega, Francisco

Director/a

Lamarca Orozco, Meritxell

Fecha de defensa

2016-01-20

Páginas

191 p.



Departamento/Instituto

Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions

Resumen

The main goal of this thesis is to develop lossless compression schemes for analog and binary sources. All the considered compression schemes have as common feature that the encoder can be represented by a graph, so they can be studied employing tools from modern coding theory. In particular, this thesis is focused on two compression problems: the group testing and the noiseless compressed sensing problems. Although both problems may seem unrelated, in the thesis they are shown to be very close. Furthermore, group testing has the same mathematical formulation as non-linear binary source compression schemes that use the OR operator. In this thesis, the similarities between these problems are exploited. The group testing problem is aimed at identifying the defective subjects of a population with as few tests as possible. Group testing schemes can be divided into two groups: adaptive and non-adaptive group testing schemes. The former schemes generate tests sequentially and exploit the partial decoding results to attempt to reduce the overall number of tests required to label all members of the population, whereas non-adaptive schemes perform all the test in parallel and attempt to label as many subjects as possible. Our contributions to the group testing problem are both theoretical and practical. We propose a novel adaptive scheme aimed to efficiently perform the testing process. Furthermore, we develop tools to predict the performance of both adaptive and non-adaptive schemes when the number of subjects to be tested is large. These tools allow to characterize the performance of adaptive and non-adaptive group testing schemes without simulating them. The goal of the noiseless compressed sensing problem is to retrieve a signal from its lineal projection version in a lower-dimensional space. This can be done only whenever the amount of null components of the original signal is large enough. Compressed sensing deals with the design of sampling schemes and reconstruction algorithms that manage to reconstruct the original signal vector with as few samples as possible. In this thesis we pose the compressed sensing problem within a probabilistic framework, as opposed to the classical compression sensing formulation. Recent results in the state of the art show that this approach is more efficient than the classical one. Our contributions to noiseless compressed sensing are both theoretical and practical. We deduce a necessary and sufficient matrix design condition to guarantee that the reconstruction is lossless. Regarding the design of practical schemes, we propose two novel reconstruction algorithms based on message passing over the sparse representation of the matrix, one of them with very low computational complexity.


El objetivo principal de la tesis es el desarrollo de esquemas de compresión sin pérdidas para fuentes analógicas y binarias. Los esquemas analizados tienen en común la representación del compresor mediante un grafo; esto ha permitido emplear en su estudio las herramientas de codificación modernas. Más concretamente la tesis estudia dos problemas de compresión en particular: el diseño de experimentos de testeo comprimido de poblaciones (de sangre, de presencia de elementos contaminantes, secuenciado de ADN, etcétera) y el muestreo comprimido de señales reales en ausencia de ruido. A pesar de que a primera vista parezcan problemas totalmente diferentes, en la tesis mostramos que están muy relacionados. Adicionalmente, el problema de testeo comprimido de poblaciones tiene una formulación matemática idéntica a los códigos de compresión binarios no lineales basados en puertas OR. En la tesis se explotan las similitudes entre todos estos problemas. Existen dos aproximaciones al testeo de poblaciones: el testeo adaptativo y el no adaptativo. El primero realiza los test de forma secuencial y explota los resultados parciales de estos para intentar reducir el número total de test necesarios, mientras que el segundo hace todos los test en bloque e intenta extraer el máximo de datos posibles de los test. Nuestras contribuciones al problema de testeo comprimido han sido tanto teóricas como prácticas. Hemos propuesto un nuevo esquema adaptativo para realizar eficientemente el proceso de testeo. Además hemos desarrollado herramientas que permiten predecir el comportamiento tanto de los esquemas adaptativos como de los esquemas no adaptativos cuando el número de sujetos a testear es elevado. Estas herramientas permiten anticipar las prestaciones de los esquemas de testeo sin necesidad de simularlos. El objetivo del muestreo comprimido es recuperar una señal a partir de su proyección lineal en un espacio de menor dimensión. Esto sólo es posible si se asume que la señal original tiene muchas componentes que son cero. El problema versa sobre el diseño de matrices y algoritmos de reconstrucción que permitan implementar esquemas de muestreo y reconstrucción con un número mínimo de muestras. A diferencia de la formulación clásica de muestreo comprimido, en esta tesis se ha empleado un modelado probabilístico de la señal. Referencias recientes en la literatura demuestran que este enfoque permite conseguir esquemas de compresión y descompresión más eficientes. Nuestras contribuciones en el campo de muestreo comprimido de fuentes analógicas dispersas han sido también teóricas y prácticas. Por un lado, la deducción de la condición necesaria y suficiente que debe garantizar la matriz de muestreo para garantizar que se puede reconstruir unívocamente la secuencia de fuente. Por otro lado, hemos propuesto dos algoritmos, uno de ellos de baja complejidad computacional, que permiten reconstruir la señal original basados en paso de mensajes entre los nodos de la representación gráfica de la matriz de proyección.

Palabras clave

Noiseless compressed sensing; Group testing; Adaptive group testing; Verification algorithm; Analog compression; Sparse pattern recovery; Binary source compression; Lossless reconstruction

Materias

519.1 - Teoría general del análisis combinatorio. Teoría de grafos; 621.3 - Ingeniería eléctrica. Electrotecnia. Telecomunicaciones

Área de conocimiento

Àrees temàtiques de la UPC::Enginyeria de la telecomunicació

Documentos

TFRJ1de1.pdf

1.539Mb

 

Derechos

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Este ítem aparece en la(s) siguiente(s) colección(ones)