SAT-based approaches for constraint optimization

dc.contributor
Universitat de Lleida. Departament d'Informàtica i Enginyeria Industrial
dc.contributor.author
Gabàs Masip, Joel
dc.date.accessioned
2016-11-03T11:00:28Z
dc.date.available
2017-07-28T05:45:11Z
dc.date.issued
2016-07-28
dc.identifier.uri
http://hdl.handle.net/10803/396610
dc.description.abstract
La optimització amb restriccions ha estat utilitzada amb èxit par a resoldre problemes en molts dominis reals (industrials). Aquesta tesi es centra en les aproximacions lògiques, concretament en Màxima Satisfactibilitat (MaxSAT) que és la versió d’optimització del problema de Satisfactibilitat booleana (SAT). A través de MaxSAT, s’han resolt molts problemes de forma eficient. Famílies d’instàncies de la majoria d’aquests problemes han estat sotmeses a la MaxSAT Evaluation (MSE), creant així una col•lecció pública i accessible d’instàncies de referència. En les edicions recents de la MSE, els algorismes SAT-based han estat les aproximacions que han tingut un millor comportament per a les instàncies industrials. Aquesta tesi està centrada en millorar els algorismes SAT-based . El nostre treball ha contribuït a tancar varies instàncies obertes i a reduir dramàticament el temps de resolució en moltes altres. A més, hem trobat sorprenentment que reformular y resoldre el problema MaxSAT a través de programació lineal sencera era especialment adequat per algunes famílies. Finalment, hem desenvolupat el primer portfoli altament eficient par a MaxSAT que ha dominat en totes las categories de la MSE des de 2013.
en_US
dc.description.abstract
La optimización con restricciones ha sido utilizada con éxito para resolver problemas en muchos dominios reales (industriales). Esta tesis se centra en las aproximaciones lógicas, concretamente en Máxima Satisfacibilidad (MaxSAT) que es la versión de optimización del problema de Satisfacibilidad booleana (SAT). A través de MaxSAT, se han resuelto muchos problemas de forma eficiente. Familias de instancias de la mayoría de ellos han sido sometidas a la MaxSAT Evaluation (MSE), creando así una colección pública y accesible de instancias de referencia. En las ediciones recientes de la MSE, los algoritmos SAT-based han sido las aproximaciones que han tenido un mejor comportamiento para las instancias industriales. Esta tesis está centrada en mejorar los algoritmos SAT-based. Nuestro trabajo ha contribuido a cerrar varias instancias abiertas y a reducir dramáticamente el tiempo de resolución en muchas otras. Además, hemos encontrado sorprendentemente que reformular y resolver el problema MaxSAT a través de programación lineal entera era especialmente adecuado para algunas familias. Finalmente, hemos desarrollado el primer portfolio altamente eficiente para MaxSAT que ha dominado en todas las categorías de la MSE desde 2013.
en_US
dc.description.abstract
Constraint optimization has been successfully used to solve problems in many real world (industrial) domains. This PhD thesis is focused on logic-based approaches, in particular, on Maximum Satisfiability (MaxSAT) which is the optimization version of Satisfiability (SAT). There have been many problems efficiency solved through MaxSAT. Instance families on the majority of them have been submitted to the international MaxSAT Evaluation (MSE), creating a collection of publicly available benchmark instances. At recent editions of MSE, SAT-based algorithms were the best performing single algorithm approaches for industrial problems. This PhD thesis is focused on the improvement of SAT-based algorithms. All this work has contributed to close up some open instances and to reduce dramatically the solving time in many others. In addition, we have surprisingly found that reformulating and solving the MaxSAT problem through Integer Linear Programming (ILP) was extremely well suited for some families. Finally, we have developed the first highly efficient MaxSAT portfolio that dominated all categories of MSE since 2013.
en_US
dc.format.extent
216 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de Lleida
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
MaxSAT
en_US
dc.subject
SAT
en_US
dc.subject
Optimització
en_US
dc.subject
Optimización
en_US
dc.subject
Optimization
en_US
dc.subject.other
Ciència de la computació i intel·ligència artificial
en_US
dc.title
SAT-based approaches for constraint optimization
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
en_US
dc.contributor.director
Ansótegui Gil, Carlos José
dc.embargo.terms
12 mesos
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

Tjgm1de1.pdf

3.221Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)