Human-robot interaction and computer-vision-based services for autonomous robots

Author

Bautista Ballester, Jordi

Director

Puig, Domènec

Codirector

Vergés Llahí, Jaume

Date of defense

2016-07-14

Pages

221 p.



Department/Institute

Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques

Abstract

L'Aprenentatge per Imitació (IL), o Programació de robots per Demostració (PbD), abasta mètodes pels quals un robot aprèn noves habilitats a través de l'orientació humana i la imitació. La PbD s'inspira en la forma en què els éssers humans aprenen noves habilitats per imitació amb la finalitat de desenvolupar mètodes pels quals les noves tasques es poden transferir als robots. Aquesta tesi està motivada per la pregunta genèrica de "què imitar?", Que es refereix al problema de com extreure les característiques essencials d'una tasca. Amb aquesta finalitat, aquí adoptem la perspectiva del Reconeixement d'Accions (AR) per tal de permetre que el robot decideixi el què cal imitar o inferir en interactuar amb un ésser humà. L'enfoc proposat es basa en un mètode ben conegut que prové del processament del llenguatge natural: és a dir, la bossa de paraules (BoW). Aquest mètode s'aplica a grans bases de dades per tal d'obtenir un model entrenat. Encara que BoW és una tècnica d'aprenentatge de màquines que s'utilitza en diversos camps de la investigació, en la classificació d'accions per a l'aprenentatge en robots està lluny de ser acurada. D'altra banda, se centra en la classificació d'objectes i gestos en lloc d'accions. Per tant, en aquesta tesi es demostra que el mètode és adequat, en escenaris de classificació d'accions, per a la fusió d'informació de diferents fonts o de diferents assajos. Aquesta tesi fa tres contribucions: (1) es proposa un mètode general per fer front al reconeixement d'accions i per tant contribuir a l'aprenentatge per imitació; (2) la metodologia pot aplicar-se a grans bases de dades, que inclouen diferents modes de captura de les accions; i (3) el mètode s'aplica específicament en un projecte internacional d'innovació real anomenat Vinbot.


El Aprendizaje por Imitación (IL), o Programación de robots por Demostración (PbD), abarca métodos por los cuales un robot aprende nuevas habilidades a través de la orientación humana y la imitación. La PbD se inspira en la forma en que los seres humanos aprenden nuevas habilidades por imitación con el fin de desarrollar métodos por los cuales las nuevas tareas se pueden transferir a los robots. Esta tesis está motivada por la pregunta genérica de "qué imitar?", que se refiere al problema de cómo extraer las características esenciales de una tarea. Con este fin, aquí adoptamos la perspectiva del Reconocimiento de Acciones (AR) con el fin de permitir que el robot decida lo que hay que imitar o inferir al interactuar con un ser humano. El enfoque propuesto se basa en un método bien conocido que proviene del procesamiento del lenguaje natural: es decir, la bolsa de palabras (BoW). Este método se aplica a grandes bases de datos con el fin de obtener un modelo entrenado. Aunque BoW es una técnica de aprendizaje de máquinas que se utiliza en diversos campos de la investigación, en la clasificación de acciones para el aprendizaje en robots está lejos de ser acurada. Además, se centra en la clasificación de objetos y gestos en lugar de acciones. Por lo tanto, en esta tesis se demuestra que el método es adecuado, en escenarios de clasificación de acciones, para la fusión de información de diferentes fuentes o de diferentes ensayos. Esta tesis hace tres contribuciones: (1) se propone un método general para hacer frente al reconocimiento de acciones y por lo tanto contribuir al aprendizaje por imitación; (2) la metodología puede aplicarse a grandes bases de datos, que incluyen diferentes modos de captura de las acciones; y (3) el método se aplica específicamente en un proyecto internacional de innovación real llamado Vinbot.


Imitation Learning (IL), or robot Programming by Demonstration (PbD), covers methods by which a robot learns new skills through human guidance and imitation. PbD takes its inspiration from the way humans learn new skills by imitation in order to develop methods by which new tasks can be transmitted to robots. This thesis is motivated by the generic question of “what to imitate?” which concerns the problem of how to extract the essential features of a task. To this end, here we adopt Action Recognition (AR) perspective in order to allow the robot to decide what has to be imitated or inferred when interacting with a human kind. The proposed approach is based on a well-known method from natural language processing: namely, Bag of Words (BoW). This method is applied to large databases in order to obtain a trained model. Although BoW is a machine learning technique that is used in various fields of research, in action classification for robot learning it is far from accurate. Moreover, it focuses on the classification of objects and gestures rather than actions. Thus, in this thesis we show that the method is suitable in action classification scenarios for merging information from different sources or different trials. This thesis makes three contributions: (1) it proposes a general method for dealing with action recognition and thus to contribute to imitation learning; (2) the methodology can be applied to large databases which include different modes of action captures; and (3) the method is applied specifically in a real international innovation project called Vinbot.

Keywords

Robòtica; Aprenentatge per imitació; Reconeixement d'accions; Robótica; Aprendizaje por imitación; Reconocimiento de acciones; Robotics; Imitation learning; Action recognition

Subjects

0 - Basic concepts; 004 - Computer science; 62 - Engineering; 68 - Industries, crafts and trades for finished or assembled articles

Knowledge Area

Ingeniería i Arquitectura

Documents

TESI.pdf

16.45Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)