Universitat de Barcelona. Facultat de Farmàcia
One of the most fundamental events in the history of life is the origin of mitochondria. It was firstly proposed by Ivan Wallin, and later popularized by Lynn Margulis, as part of the endosymbiotic theory, that mitochondria initially arose from free-living bacteria that invaded eukaryotic cells (Wallin, 1922; Sagan, 1967). As a consequence, a mutually beneficial relationship was formed, where the eukaryote delivered protection and nutrients to the prokaryote and, in return, the prokaryote provided additional energy to its host by encoding the gene products essential for the energy-generating process known as oxidative phosphorylation (OXPHOS). However, as this relationship became permanent over time, OXPHOS became indispensable to its host and the mitochondrion lost its autonomy, causing many of the mitochondrial genes to be transferred to the nuclear genome. The mammalian mitochondria has retained only a small subset of 37 genes in the form of a circular DNA molecule with a size of approximately 16.6 kb, including 13 essential subunits of the electron transport chain (ETC) (Anderson et al, 1981). Thus, these mitochondrial DNA (mtDNA)-encoded genes rely on nuclear encoded proteins for their transcription, processing and translation. Defects in the production or stabilization of these mtDNA-encoded subunits can lead to OXPHOS dysfunction, contributing to diverse types of human diseases, including different types of cancer, cardiomyopathies and neurodegenerative conditions (Chandra and Singh, 2011; Breuer et al, 2013). Therefore, it has become of vital importance to understand and explore the regulatory mechanisms involved in controlling mitochondrial function. The identification and study of novel proteins that might enable particular mitochondrial functions will allow for the identification of new candidate genes for the molecular diagnosis of mitochondrial disorders. Exonuclease 3’-5’ domain containing 2 (EXD2) is a nuclear encoded gene that has been described to promote homologous recombination by facilitating DNA end resection (Broderick et al, 2016). Here we report that EXD2 is targeted to the mitochondria and it’s critical for normal metabolism. We found that EXD2 interacts with Complex I of the ETC and the mitoribosome and its depletion impairs mitochondrial translation, leading to a defective OXPHOS, accumulation of ROS and reduced ATP production. In Drosophila melanogaster, we observed that EXD2 deficiency leads to premature stem cell attrition in the female germline and an extension in lifespan that can be rescued by an antioxidant diet. Together, our results define EXD2 as a mitochondrial regulator of translation and OXPHOS activity, that is required for germline stem cell maintenance and suggest that it could be a candidate gene for human metabolic disorders.
Las mitocondrias son orgánulos celulares con una función bioenergética, biosintética y de señalización. A pesar de tener su propio genoma, las mitocondrias requieren genes codificados en el núcleo para su correcto funcionamiento. Nuestro trabajo se centra en el estudio de una proteína no caracterizada llamada Exonuclease 3’-5’ domain like 2 (EXD2), codificada por un gen nuclear que ha sido previamente asociado con la recombinación y reparación del daño en el DNA. Curiosamente, observamos que EXD2 localiza en la mitocondria y que su reducción en los niveles de expresión resulta en un consumo de oxígeno más bajo, defectos en el metabolismo y mtDNA reducido. EXD2 no parece asociarse con proteínas de replicación conocidas y su reducción no afecta la replicación del mtDNA. En cambio, encontramos que EXD2 interacciona con diferentes subunidades del Complejo I de la cadena de transporte electrónico y el mitoribosoma y que su reducción afecta la traducción mitocondrial causando anormalidades metabólicas. Un mal funcionamiento de EXD2 en Drosophila conlleva a defectos en el desarrollo, un desgaste prematuro de las células madre germinales (GSCs) y problemas de fertilidad, los cuales son acompañados de un incremento significante de esperanza de vida. Todos los fenotipos pueden ser revertidos con una dieta anti- oxidante, apoyando la idea de que la reducción de EXD2 genera estrés oxidativo. Finalmente, observamos que una deficiencia en EXD2 afecta al crecimiento de tumores de mama en xenoinjertos, posiblemente por la rendición de células dependientes de glutamina o sensibles a hipoxia. Nuestra hipótesis es que EXD2 afecta a la traducción mitocondrial, y su inhibición resulta en una deficiencia en la fosforilación oxidativa y una acumulación de especies reactivas de oxígeno (ROS). Proponemos que las mutaciones en EXD2 podrían subyacer a una enfermedad metabólica sin diagnosticar y ello podría tener una aplicación como biomarcador o diana en cáncer humano.
Metabolisme; Metabolismo; Metabolism; Mitocondris; Mitocondrias; Mitochondria; Cèl·lules mare; Células madre; Stem cells
577 - Bioquímica. Biologia molecular. Biofísica
Ciències de la Salut
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
Facultat de Farmàcia [107]