Stochastic and complex dynamics in mesoscopic brain networks

dc.contributor
Universitat Politècnica de Catalunya. Departament de Física
dc.contributor.author
Malagarriga i Guasch, Daniel
dc.date.accessioned
2017-07-03T10:02:21Z
dc.date.available
2017-07-03T10:02:21Z
dc.date.issued
2017-01-13
dc.identifier.uri
http://hdl.handle.net/10803/404298
dc.description.abstract
The aim of this thesis is to deepen into the understanding of the mechanisms responsible for the generation of complex and stochastic dynamics, as well as emerging phenomena, in the human brain. We study typical features from the mesoscopic scale, i.e., the scale in which the dynamics is given by the activity of thousands or even millions of neurons. At this scale the synchronous activity of large neuronal populations gives rise to collective oscillations of the average voltage potential. These oscillations can easily be recorded using electroencephalography devices (EEG) or measuring the Local Field Potentials (LFPs). In Chapter 5 we show how the communication between two cortical columns (mesoscopic structures) can be mediated efficiently by a microscopic neural network. We use the synchronization of both cortical columns as a probe to ensure that an effective communication is established between the three neural structures. Our results indicate that there are certain dynamical regimes from the microscopic neural network that favor the correct communication between the cortical columns: therefore, if the LFP frequency of the neural network is of around 40Hz, the synchronization between the cortical columns is more robust compared to the situation in which the neural network oscillates at a lower frequency (10Hz). However, microscopic topological characteristics of the network also influence communication, being a small-world structure the one that best promotes the synchronization of the cortical columns. Finally, this Chapter shows how the mediation exerted by the neural network cannot be substituted by the average of its activity, that is, the dynamic properties of the microscopic neural network are essential for the proper transmission of information between all neural structures. The oscillatory brain electrical activity is largely dependent on the interplay between excitation and inhibition. In Chapter 6 we study how groups of cortical columns show complex patterns of cortical excitation and inhibition taking into account their topological features and the strength of their couplings. These cortical columns segregate between those dominated by excitation and those dominated by inhibition, affecting the synchronization properties of networks of cortical columns. In Chapter 7 we study a dynamic regime by which complex patterns of synchronization between chaotic oscillators appear spontaneously in a network. We show what conditions must a set of coupled dynamical systems fulfill in order to display heterogeneity in synchronization. Therefore, our results are related to the complex phenomenon of synchronization in the brain, which is a focus of study nowadays. Finally, in Chapter 8 we study the ability of the brain to compute and process information. The novelty here is our use of complex synchronization in the brain in order to implement basic elements of Boolean computation. In this way, we show that the partial synchronization of the oscillations in the brain establishes a code in terms of synchronization / non-synchronization (1/0, respectively), and thus all simple Boolean functions can be implemented (AND, OR, XOR, etc.). We also show that complex Boolean functions, such as a flip-flop memory, can be constructed in terms of states of dynamic synchronization of brain oscillations.
en_US
dc.description.abstract
L'objectiu d'aquesta Tesi és aprofundir en la comprensió dels mecanismes responsables de la generació de dinàmica complexa i estocàstica, així com de fenòmens emergents, en el cervell humà. Estudiem la fenomenologia característica de l'escala mesoscòpica, és a dir, aquella en la que la dinàmica característica ve donada per l'activitat de milers de neurones. En aquesta escala l'activitat síncrona de grans poblacions neuronals dóna lloc a un fenomen col·lectiu pel qual es produeixen oscil·lacions del seu potencial mitjà. Aquestes oscil·lacions poden ser fàcilment enregistrades mitjançant aparells d'electroencefalograma (EEG) o enregistradors de Potencials de Camp Local (LFP). En el Capítol 5 mostrem com la comunicació entre dos columnes corticals (estructures mesoscòpiques) pot ser conduïda de forma eficient per una xarxa neuronal microscòpica. De fet, emprem la sincronització de les dues columnes corticals per comprovar que s'ha establert una comunicació efectiva entre les tres estructures neuronals. Els resultats indiquen que hi ha règims dinàmics de la xarxa neuronal microscòpica que afavoreixen la correcta comunicació entre les columnes corticals: si la freqüència típica de LFP a la xarxa neuronal està al voltant dels 40Hz la sincronització entre les columnes corticals és més robusta que a una menor freqüència (10Hz). La topologia de la xarxa microscòpica també influeix en la comunicació, essent una estructura de tipus món petit (small-world) la que més afavoreix la sincronització. Finalment, la mediació de xarxa neuronal no pot ser substituïda per la mitjana de la seva activitat, és a dir, les propietats dinàmiques microscòpiques són imprescindibles per a la correcta transmissió d'informació entre totes les escales cerebrals. L'activitat elèctrica oscil·latòria cerebral ve donada en gran mesura per la interacció entre excitació i inhibició neuronal. En el Capítol 6 estudiem com grups de columnes corticals mostren patrons complexos d'excitació i inhibició segons quina sigui la seva topologia i d'acoblament. D'aquesta manera les columnes corticals se segreguen entre aquelles dominades per l'excitació i aquelles dominades per la inhibició, influint en les capacitats de sincronització de xarxes de columnes corticals. En el Capítol 7 estudiem un règim dinàmic segons el qual patrons complexos de sincronització apareixen espontàniament en xarxes d'oscil·ladors caòtics. Mostrem quines condicions s'han de donar en un conjunt de sistemes dinàmics acoblats per tal de mostrar heterogeneïtat en la sincronització, és a dir, coexistència de sincronitzacions. D'aquesta manera relacionem els nostres resultats amb el fenomen de sincronització complexa en el cervell. Finalment, en el Capítol 8 estudiem com el cervell computa i processa informació. La novetat aquí és l'ús que fem de la sincronització complexa de columnes corticals per tal d'implementar elements bàsics de computació Booleana. Mostrem com la sincronització parcial de les oscil·lacions cerebrals estableix un codi neuronal en termes de sincronització/no sincronització (1/0, respectivament) amb el qual totes les funcions Booleanes simples poden ésser implementades (AND, OR, XOR, etc). Mostrem, també, com emprant xarxes mesoscòpiques extenses les capacitats de computació creixen proporcionalment. Així funcions Booleanes complexes, com una memòria del tipus flip-flop, pot ésser construïda en termes d'estats de sincronització dinàmica d'oscil·lacions cerebrals.
en_US
dc.format.extent
162 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject.other
Àrees temàtiques de la UPC::Física
en_US
dc.title
Stochastic and complex dynamics in mesoscopic brain networks
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
577
en_US
dc.contributor.director
Pons Rivero, Antonio Javier
dc.contributor.director
Villa, Alessandro E.P.
dc.contributor.director
García Ojalvo, Jordi
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documentos

TDMG1de1.pdf

20.19Mb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)