Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
There has been an exponential surge of text data in the recent years. As a consequence, unsupervised methods that make use of this data have been steadily growing in the field of natural language processing (NLP). Word embeddings are low-dimensional vectors obtained using unsupervised techniques on the large unlabelled corpora, where words from the vocabulary are mapped to vectors of real numbers. Word embeddings aim to capture syntactic and semantic properties of words. In NLP, many tasks involve computing the compatibility between lexical items under some linguistic relation. We call this type of relation a bilexical relation. Our thesis defines statistical models for bilexical relations that centrally make use of word embeddings. Our principle aim is that the word embeddings will favor generalization to words not seen during the training of the model. The thesis is structured in four parts. In the first part of this thesis, we present a bilinear model over word embeddings that leverages a small supervised dataset for a binary linguistic relation. Our learning algorithm exploits low-rank bilinear forms and induces a low-dimensional embedding tailored for a target linguistic relation. This results in compressed task-specific embeddings. In the second part of our thesis, we extend our bilinear model to a ternary setting and propose a framework for resolving prepositional phrase attachment ambiguity using word embeddings. Our models perform competitively with state-of-the-art models. In addition, our method obtains significant improvements on out-of-domain tests by simply using word-embeddings induced from source and target domains. In the third part of this thesis, we further extend the bilinear models for expanding vocabulary in the context of statistical phrase-based machine translation. Our model obtains a probabilistic list of possible translations of target language words, given a word in the source language. We do this by projecting pre-trained embeddings into a common subspace using a log-bilinear model. We empirically notice a significant improvement on an out-of-domain test set. In the final part of our thesis, we propose a non-linear model that maps initial word embeddings to task-tuned word embeddings, in the context of a neural network dependency parser. We demonstrate its use for improved dependency parsing, especially for sentences with unseen words. We also show downstream improvements on a sentiment analysis task.
En els darrers anys hi ha hagut un sorgiment notable de dades en format textual. Conseqüentment, en el camp del Processament del Llenguatge Natural (NLP, de l'anglès "Natural Language Processing") s'han desenvolupat mètodes no supervistats que fan ús d'aquestes dades. Els anomenats "word embeddings", o embeddings de paraules, són vectors de dimensionalitat baixa que s'obtenen mitjançant tècniques no supervisades aplicades a corpus textuals de grans volums. Com a resultat, cada paraula del diccionari es correspon amb un vector de nombres reals, el propòsit del qual és capturar propietats sintàctiques i semàntiques de la paraula corresponent. Moltes tasques de NLP involucren calcular la compatibilitat entre elements lèxics en l'àmbit d'una relació lingüística. D'aquest tipus de relació en diem relació bilèxica. Aquesta tesi proposa models estadístics per a relacions bilèxiques que fan ús central d'embeddings de paraules, amb l'objectiu de millorar la generalització del model lingüístic a paraules no vistes durant l'entrenament. La tesi s'estructura en quatre parts. A la primera part presentem un model bilineal sobre embeddings de paraules que explota un conjunt petit de dades anotades sobre una relaxió bilèxica. L'algorisme d'aprenentatge treballa amb formes bilineals de poc rang, i indueix embeddings de poca dimensionalitat que estan especialitzats per la relació bilèxica per la qual s'han entrenat. Com a resultat, obtenim embeddings de paraules que corresponen a compressions d'embeddings per a una relació determinada. A la segona part de la tesi proposem una extensió del model bilineal a trilineal, i amb això proposem un nou model per a resoldre ambigüitats de sintagmes preposicionals que usa només embeddings de paraules. En una sèrie d'avaluacións, els nostres models funcionen de manera similar a l'estat de l'art. A més, el nostre mètode obté millores significatives en avaluacions en textos de dominis diferents al d'entrenament, simplement usant embeddings induïts amb textos dels dominis d'entrenament i d'avaluació. A la tercera part d'aquesta tesi proposem una altra extensió dels models bilineals per ampliar la cobertura lèxica en el context de models estadístics de traducció automàtica. El nostre model probabilístic obté, donada una paraula en la llengua d'origen, una llista de possibles traduccions en la llengua de destí. Fem això mitjançant una projecció d'embeddings pre-entrenats a un sub-espai comú, usant un model log-bilineal. Empíricament, observem una millora significativa en avaluacions en dominis diferents al d'entrenament. Finalment, a la quarta part de la tesi proposem un model no lineal que indueix una correspondència entre embeddings inicials i embeddings especialitzats, en el context de tasques d'anàlisi sintàctica de dependències amb models neuronals. Mostrem que aquest mètode millora l'analisi de dependències, especialment en oracions amb paraules no vistes durant l'entrenament. També mostrem millores en un tasca d'anàlisi de sentiment.
004 - Informàtica
Àrees temàtiques de la UPC::Informàtica