Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
One of the outstanding milestones achieved in recent years in the field of biotechnology research has been the development of high-throughput sequencing (HTS). Due to the fact that at the moment it is technically impossible to decode the genome as a whole, HTS technologies read billions of relatively short chunks of a genome at random locations. Such reads then need to be located within a reference for the species being studied (that is aligned or mapped to the genome): for each read one identifies in the reference regions that share a large sequence similarity with it, therefore indicating what the read¿s point or points of origin may be. HTS technologies are able to re-sequence a human individual (i.e. to establish the differences between his/her individual genome and the reference genome for the human species) in a very short period of time. They have also paved the way for the development of a number of new protocols and methods, leading to novel insights in genomics and biology in general. However, HTS technologies also pose a challenge to traditional data analysis methods; this is due to the sheer amount of data to be processed and the need for improved alignment algorithms that can generate accurate results quickly. This thesis tackles the problem of sequence alignment as a step within the analysis of HTS data. Its contributions focus on both the methodological aspects and the algorithmic challenges towards efficient, scalable, and accurate HTS mapping. From a methodological standpoint, this thesis strives to establish a comprehensive framework able to assess the quality of HTS mapping results. In order to be able to do so one has to understand the source and nature of mapping conflicts, and explore the accuracy limits inherent in how sequence alignment is performed for current HTS technologies. From an algorithmic standpoint, this work introduces state-of-the-art index structures and approximate string matching algorithms. They contribute novel insights that can be used in practical applications towards efficient and accurate read mapping. More in detail, first we present methods able to reduce the storage space taken by indexes for genome-scale references, while still providing fast query access in order to support effective search algorithms. Second, we describe novel filtering techniques that vastly reduce the computational requirements of sequence mapping, but are nonetheless capable of giving strict algorithmic guarantees on the completeness of the results. Finally, this thesis presents new incremental algorithmic techniques able to combine several approximate string matching algorithms; this leads to efficient and flexible search algorithms allowing the user to reach arbitrary search depths. All algorithms and methodological contributions of this thesis have been implemented as components of a production aligner, the GEM-mapper, which is publicly available, widely used worldwide and cited by a sizeable body of literature. It offers flexible and accurate sequence mapping while outperforming other HTS mappers both as to running time and to the quality of the results it produces.
Uno de los avances más importantes de los últimos años en el campo de la biotecnología ha sido el desarrollo de las llamadas técnicas de secuenciación de alto rendimiento (high-throughput sequencing, HTS). Debido a las limitaciones técnicas para secuenciar un genoma, las técnicas de alto rendimiento secuencian individualmente billones de pequeñas partes del genoma provenientes de regiones aleatorias. Posteriormente, estas pequeñas secuencias han de ser localizadas en el genoma de referencia del organismo en cuestión. Este proceso se denomina alineamiento - o mapeado - y consiste en identificar aquellas regiones del genoma de referencia que comparten una alta similaridad con las lecturas producidas por el secuenciador. De esta manera, en cuestión de horas, la secuenciación de alto rendimiento puede secuenciar un individuo y establecer las diferencias de este con el resto de la especie. En última instancia, estas tecnologías han potenciado nuevos protocolos y metodologías de investigación con un profundo impacto en el campo de la genómica, la medicina y la biología en general. La secuenciación alto rendimiento, sin embargo, supone un reto para los procesos tradicionales de análisis de datos. Debido a la elevada cantidad de datos a analizar, se necesitan nuevas y mejoradas técnicas algorítmicas que puedan escalar con el volumen de datos y producir resultados precisos. Esta tesis aborda dicho problema. Las contribuciones que en ella se realizan se enfocan desde una perspectiva metodológica y otra algorítmica que propone el desarrollo de nuevos algoritmos y técnicas que permitan alinear secuencias de manera eficiente, precisa y escalable. Desde el punto de vista metodológico, esta tesis analiza y propone un marco de referencia para evaluar la calidad de los resultados del alineamiento de secuencias. Para ello, se analiza el origen de los conflictos durante la alineación de secuencias y se exploran los límites alcanzables en calidad con las tecnologías de secuenciación de alto rendimiento. Desde el punto de vista algorítmico, en el contexto de la búsqueda aproximada de patrones, esta tesis propone nuevas técnicas algorítmicas y de diseño de índices con el objetivo de mejorar la calidad y el desempeño de las herramientas dedicadas a alinear secuencias. En concreto, esta tesis presenta técnicas de diseño de índices genómicos enfocados a obtener un acceso más eficiente y escalable. También se presentan nuevas técnicas algorítmicas de filtrado con el fin de reducir el tiempo de ejecución necesario para alinear secuencias. Y, por último, se proponen algoritmos incrementales y técnicas híbridas para combinar métodos de alineamiento y mejorar el rendimiento en búsquedas donde el error esperado es alto. Todo ello sin degradar la calidad de los resultados y con garantías formales de precisión. Para concluir, es preciso apuntar que todos los algoritmos y metodologías propuestos en esta tesis están implementados y forman parte del alineador GEM. Este versátil alineador ofrece resultados de alta calidad en entornos de producción siendo varias veces más rápido que otros alineadores. En la actualidad este software se ofrece gratuitamente, tiene una amplia comunidad de usuarios y ha sido citado en numerosas publicaciones científicas.
004 - Informática
Àrees temàtiques de la UPC::Informàtica