Radiation Transport Modelling in a Tokomak Plasma: Application to Performance Prediciton and Design of Future Machines

dc.contributor
Universitat Politècnica de Catalunya. Departament de Física i Enginyeria Nuclear
dc.contributor.author
Albajar Viñas, Ferran
dc.date.accessioned
2011-04-12T15:19:13Z
dc.date.available
2004-01-14
dc.date.issued
2001-06-14
dc.date.submitted
2004-01-14
dc.identifier.isbn
8468853569
dc.identifier.uri
http://www.tdx.cat/TDX-0114104-103202
dc.identifier.uri
http://hdl.handle.net/10803/6599
dc.description.abstract
The understanding and modelling of heat and radiation transport in tokamak plasmas is essential in order to progress in the development of thermonuclear fusion towards a practical energy source which meets all the future needs of environment, safety, and fuel inexhaustibility. This activity enables prospective studies and design to be carried out for next step tokamaks. Due to the complexity of the exact calculation, synchrotron losses are usually estimated in such studies, with expressions derived from a plasma description using simplifying assumptions on the geometry, radiation absorption, density and temperature profiles. In this thesis, a complete formulation of the transport of synchrotron radiation is performed for realistic conditions of toroidal plasma geometry with elongated cross-section, using a precise method for the calculation of the absorption coefficients, and for arbitrary shapes of density and temperature profiles. In particular, this formulation is able to describe plasmas with arbitrary aspect ratios and with temperature profiles obtained in internal transport barrier regimes, which cannot be described accurately with the present expressions. As an illustration, we show that in the case of an advanced high-temperature plasma envisaged for a steady state D-T commercial reactor, synchrotron losses represent approximately 20% of the total losses. Considering the quantitative importance of the above effects and the significant magnitude of synchrotron losses in the thermal power balance of a D-T tokamak reactor plasma, a new fit for the fast calculation of the synchrotron radiation loss is proposed. Using this improved model in the thermal balance, prospective and sensitivity studies are performed for future tokamak projects, and the key issues which limit the performance are isolated. It is shown that, the most restrictive constraint for achieving higher plasma performance is the peak heat flux on the divertor plates. In non-inductive steady-state operation, advanced tokamak regimes are required to achieve relevant thermonuclear plasma performance for next step tokamaks and for a commercial reactor. In the frame of a multi-step strategy towards a commercial reactor, a superconducting next step tokamak compatible with the European budget possibilities is optimized. Considering both the plasma physics and the magnetic system technology and for a given aspect ratio, the smallest machine meeting the physical and technological requirements is determined. In a steady state tokamak commercial reactor, we show that there is an optimal value for the confinement enhancement factor which maximizes the plasma performance, for a given and also for the highest electrical power into the network. This highest electrical power meeting the stability requirements steadily decreases with the confinement enhancement factor. This effect is crucial because both a high plasma performance and a high enough electrical power into the network are required to minimize the cost of electricity, and consequently to make fusion energy more competitive.
eng
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
energy
dc.subject
tokamak
dc.subject
modelling
dc.subject
fusion
dc.subject
ITER
dc.subject
performance
dc.subject
nuclear
dc.subject
transport
dc.subject
electromagnetic
dc.subject
reactor
dc.subject
radiation
dc.subject.other
3320. Tecnologia nuclear - 2207. Física Atòmica i nuclear - 2204. Física de fluids - 2208. Nucleònic
dc.title
Radiation Transport Modelling in a Tokomak Plasma: Application to Performance Prediciton and Design of Future Machines
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
536
cat
dc.subject.udc
537
cat
dc.subject.udc
62
cat
dc.subject.udc
621
cat
dc.contributor.director
Dies Llovera, Javier
dc.contributor.codirector
Johner, Jean
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
cat
dc.identifier.dl
B.10751-2004


Documents

01PORTADA.pdf

98.86Kb PDF

02AGRAIMENTS.pdf

91.40Kb PDF

03INDEX.pdf

31.83Kb PDF

04INTRODUCCIO.pdf

26.53Kb PDF

05CAPITOL1.pdf

741.9Kb PDF

06CAPITOL2.pdf

846.2Kb PDF

07CAPITULO3.pdf

1.122Mb PDF

08CAPITULO4.pdf

756.7Kb PDF

09CAPITULO5.pdf

816.3Kb PDF

10CAPITULO6.pdf

775.5Kb PDF

11CONCLUSIONS.pdf

28.62Kb PDF

12ANNEXA.pdf

141.1Kb PDF

13ANNEXB.pdf

128.5Kb PDF

14ANNEXC.pdf

160.6Kb PDF

15BIBLIOGRAFIA.pdf

31.35Kb PDF

16PUBLICACIONS.pdf

12.39Kb PDF

This item appears in the following Collection(s)