Universitat de Barcelona. Departament d'Algebra i Geometria
This thesis seeks to contribute to a deeper understanding of the moduli spaces <i>M-sub X, H (r; c1,., Cmin{r;n}</i>) of rank <i>r</I>, <i>H</i>-stable vector bundles E on an <i>n</i>-dimensional variety <i>X</I>, with fixed Chern classes <i>c-sub1(E)</I> = <i>csub1 H-super2i ( X , Z)</i> , displaying new and interesting geometric properties of <i>M-sub X, H (r; c1,., Cmin{r;n}</i>) which nicely reflect the general philosophy that moduli spaces inherit a lot of .geometrical properties of the underlying variety <i>X</i>.<br/><br/>More precisely, we consider a smooth, irreducible, n-dimensional, projective variety X defined over an algebraically closed field k of characteristic zero, H an ample divisor on X, r >/2 an integer and c-subi H-super2i(X,Z) for i = 1, .,min{r,n}. We denote by <i>M-sub X, H (r; c1,., Cmin{r;n}</i>) the moduli space of rank r, vector bundles E on X, H-stable, in the sense of Mumford-Takemoto, with fixed Chern classes c-subi(E) = c-subi for i = 1, . , min{r, n}.<br/><br/>The contents of this Thesis is the following: Chapter 1 is devoted to provide the reader with the general background that we will need in the sequel. In the first two sections, we have collected the main definitions and results concerning coherent sheaves and moduli spaces, at least, those we will need through this work.<br/><br/>The aim of Chapter 2 is to establish the enterions of rationality for moduli spaces of rank two, it-stable vector bundles on a smooth, irreducible, rational surface X that will be used as one of our tools for answering Question (1), who is that follows: "Let X be a smooth, irreducible, rational surface. Fix C-sub1 Pic(X) and 0 « c2 Z. Is there an ample divisor H on X such that M-sub X,H(2; Ci, c2) is rational?"<br/><br/>In Chapter 3 we prove that the moduli space M-sub X,H(2; Ci, c2) of rank two, H-stable, vector bundles E on a smooth, irreducible, rational surface X, with fixed Chern classes C-sub1(E) = C-sub1 Pic(X) and 0 « C-sub2«(E) Z is a smooth, irreducible, rational, quasi-projective variety (Theorem 3.3.7) which solves Question (1).<br/><br/>In Chapter 4 we study moduli spaces (M-sub X,H(2; Ci, c2)) of rank r, H-stable vector bundles on either minimal rational surfaces or on algebraic K3 surfaces.<br/><br/>In Chapter 5 we deal with moduli spaces M-sub x,l (2;Ci,C2) of rank two, L-stable vector bundles E, on P-bundles of arbitrary dimension, with fixed Chern classes.
Feixos fibrats (Matemàtica); Geometria algebraica; Espais de moduli
512 - Álgebra
Ciències Experimentals i Matemàtiques
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.