Context, motion and semantic information for computational saliency

dc.contributor
Universitat Autònoma de Barcelona. Departament de Ciències de la Computació
dc.contributor.author
Azaza, Aymen
dc.date.accessioned
2018-12-18T06:35:09Z
dc.date.available
2018-12-18T06:35:09Z
dc.date.issued
2018-10-12
dc.identifier.isbn
9788449081729
en_US
dc.identifier.uri
http://hdl.handle.net/10803/664359
dc.description.abstract
El objetivo principal de esta tesis es resaltar el objeto más sobresaliente (salient) de una imagen o en una secuencia de video. Abordamos tres aspectos importantes --- según nuestra opinión, no han sido suficientemente investigados --- en la detección de saliencia. En primer lugar, comenzamos ampliando la investigación previa sobre saliency que modela explícitamente la información proporcionada desde el contexto. Luego, mostramos la importancia del modelado de contexto explícito para la estimación del saliency. Varios trabajos importantes en saliency se basan en el uso de “object proposal”. Sin embargo, estos métodos se centran en el Saliency del “object proposal” e ignoran el contexto. Para introducir el contexto en tales enfoques de Saliency, unimos cada “object proposal” con su contexto directo. Esto nos permite evaluar la importancia del entorno inmediato (contexto) para calcular su Saliency. Proponemos varias características de Saliency, que se calculan a partir de los “object porposal”, incluidas las funciones basadas en continuidad de contexto omnidireccional y horizontal. En segundo lugar, investigamos el uso de métodos top-down (información semántica de alto nivel) para la tarea de predicción de saliency, ya que la mayoría de los métodos computacionales son bottom-up o solo incluyen pocas clases semánticas. Proponemos considerar un grupo más amplio de clases de objetos. Estos objetos representan información semántica importante que explotaremos en nuestro enfoque de predicción de prominencias. En tercer lugar, desarrollamos un método para detectar la saliency de video mediante el cálculo de la saliencia de supervoxels y optical flow. Además, aplicamos las características de contexto desarrolladas en esta tesis para la detección de saliency en video. El método combina características de forma y movimiento con nuestras características de contexto. En resumen, demostramos que la extensión de “object proposal” con su contexto directo mejora la tarea de detección de saliency en datos de imágenes y video. También se evalúa la importancia de la información semántica en la estimación del saliency. Finalmente, proponemos una nueva función de movimiento para detectar el salient en los datos de video. Las tres novedades propuestas se evalúan en conjuntos de datos de referencia de saliency estándar y se ha demostrado que mejoran con respecto al estado del arte.
en_US
dc.description.abstract
The main objective of this thesis is to highlight the salient object in an image or in a video sequence. We address three important --- but in our opinion insufficiently investigated --- aspects of saliency detection. Firstly, we start by extending previous research on saliency which explicitly models the information provided from the context. Then, we show the importance of explicit context modelling for saliency estimation. Several important works in saliency are based on the usage of object proposals. However, these methods focus on the saliency of the object proposal itself and ignore the context. To introduce context in such saliency approaches, we couple every object proposal with its direct context. This allows us to evaluate the importance of the immediate surround (context) for its saliency. We propose several saliency features which are computed from the context proposals including features based on omni-directional and horizontal context continuity. Secondly, we investigate the usage of top-down methods (high-level semantic information) for the task of saliency prediction since most computational methods are bottom-up or only include few semantic classes. We propose to consider a wider group of object classes. These objects represent important semantic information which we will exploit in our saliency prediction approach. Thirdly, we develop a method to detect video saliency by computing saliency from supervoxels and optical flow. In addition, we apply the context features developed in this thesis for video saliency detection. The method combines shape and motion features with our proposed context features. To summarize, we prove that extending object proposals with their direct context improves the task of saliency detection in both image and video data. Also the importance of the semantic information in saliency estimation is evaluated. Finally, we propose a new motion feature to detect saliency in video data. The three proposed novelties are evaluated on standard saliency benchmark datasets and are shown to improve with respect to state-of-the-art.
en_US
dc.format.extent
134 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Autònoma de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Visió per computador
en_US
dc.subject
Visión por computador
en_US
dc.subject
Computer vision
en_US
dc.subject
Detecció de Saliència
en_US
dc.subject
Detección de Saliencia
en_US
dc.subject
Saliency Detection
en_US
dc.subject
Reconeixmenet d'objectes
en_US
dc.subject
Reconocimiento de objetos
en_US
dc.subject
Object recognition
en_US
dc.subject.other
Tecnologies
en_US
dc.title
Context, motion and semantic information for computational saliency
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
en_US
dc.contributor.authoremail
aymen.azaza@cvc.uab.es
en_US
dc.contributor.director
Weijer, Joost van de
dc.contributor.director
Douik, Ali
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

ayaz1de1.pdf

2.250Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)