Individual traits versus invariances of cognitive functions: a model-based study of brain connectivity

Author

Pallarés Picazo, Vicente

Director

Gilson, Matthieu

Deco, Gustavo,

Ramírez, Rafael

Date of defense

2019-04-12

Pages

120 p.



Department/Institute

Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions

Doctorate programs

Programa de doctorat en Tecnologies de la Informació i les Comunicacions

Abstract

Es conocido en la literatura de neuroimagen que las redes cerebrales funcionales reflejan rasgos personales. Estas características individuales, podrían interferir al caracterizar la cognición entendida como la manera en que se coordinan las redes para realizar una tarea, como mantener la atención, recordar, o procesar información visual. Cómo estos aspectos individuales coexisten con mecanismos generales es, por tanto, una pregunta clave en investigación sobre conectividad cerebral. Este trabajo estudia la relación entre marcadores de conectividad específicos tanto de sujetos, como de tareas. Se centra en dos escalas temporales distintas: la variabilidad entre sesiones, y las fluctuaciones rápidas producidas durante una sesión de adquisición. Utilizamos técnicas de machine learning para separar cuantitativamente las contribuciones de información del sujeto y del estado cognitivo a la conectividad. La metodología presentada nos permite extraer aquellas redes representativas de ambas dimensiones, así como profundizar en su evolución, sugiriendo las escalas temporales relevantes en la cognición.


És conegut en la literatura de neuroimatge que les xarxes cerebrals funcionals reflecteixen trets personals. Aquestes característiques individuals podrien interferir en caracteritzar la cognició entesa com la manera en què les xarxes es coordinen per realitzar una tasca, com mantenir l'atenció, recordar o processar informació visual. Cóm aquests aspectes individuals coexisteixen amb mecanismes generals, és, per tant, una pregunta clau en recerca sobre connectivitat cerebral. Aquest treball estudia la relació entre marcadors de connectivitat específics tant de subjectes, com de tasques. Se centra en dues escales temporals: la variabilitat entre sessions, i les fluctuacions ràpides produïdes durant una sessió d'adquisició. Utilitzem tècniques de machine learning per separar quantitativament les contribucions d'informació del subjecte i de l'estat cognitiu a la connectivitat. La metodologia presentada ens permet extreure aquelles xarxes representatives d'ambdues dimensions, així com aprofundir en la seva evolució, suggerint les escales temporals rellevants en la cognició.


There is consistent evidence in the neuroimaging literature that functional brain networks reflect personal traits. Individual specificity may interfere with the characterization of cognition, in terms of coordination of brain networks to perform a task, such as sustained attention, memory retrieval or visual information processing. How individual traits coexist with invariant mechanisms is, therefore, a key question in brain connectivity research. This work aims to examine the relationship between subject- and task-specific connectivity signatures. It focuses on two different timescales: day-to-day variability and faster fluctuations exhibited within a scanning session. We adopt a machine learning approach to quantitatively disentangle the contribution of subject information and cognitive state to the connectivity patterns. The proposed methodology allows us to extract the specific brain networks that support each of the two dimensions, as well as to delve into their changes over time, suggesting the relevant timescales for cognition.

Keywords

Neurociencia computacional; fMRI; Conectividad cerebral; Modelos cerebrales; Aprendizaje automático; Selección de features; Conectividad dinámica; Redes cerebrales; Análisis multivariado; Conectividad funcional; Correlación; Integración; Segregación; Neurociència computacional; Connectivitat cerebral; Models cerebrals; Aprenentatge automàtic; Selecció de trets; Connectivitat dinàmica; Xarxes cerebrals; Anàlisi multivariat; Connectivitat funcional; Correlació; Integració; Segregació; Computational neuroscience; Brain connectivity; Whole-brain modelling; Machine learning; Feature selection; Dynamic connectivity; Brain networks; Multivariate analysis; Functional connectome; Correlation; Integration; Segregation

Subjects

62 - Engineering

Documents

tvpp.pdf

18.14Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/

This item appears in the following Collection(s)