dc.contributor
Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
dc.contributor.author
Ruiz Fernández, Guillermo
dc.date.accessioned
2019-06-12T11:40:31Z
dc.date.available
2019-06-12T11:40:31Z
dc.date.issued
2018-12-12
dc.identifier.uri
http://hdl.handle.net/10803/667049
dc.description.abstract
This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery.
This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties.
First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model.
Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection.
Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.
en_US
dc.description.abstract
Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia.
Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats.
En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic.
En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada.
Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.
en_US
dc.format.extent
134 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Pompeu Fabra
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
3D morphable models
en_US
dc.subject
3D reconstruction
en_US
dc.subject
Breast imaging
en_US
dc.subject
Plastic surgery
en_US
dc.subject
Reconstructive surgery
en_US
dc.subject
Shape constraints
en_US
dc.subject
Statistical shape models
en_US
dc.subject
Active Shape Models
en_US
dc.subject
Weighted regularized
en_US
dc.title
3D reconstruction for plastic surgery simulation based on statistical shape models
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.authoremail
guille10rf@gmail.com
en_US
dc.contributor.director
González Ballester, Miguel Ángel
dc.contributor.director
Sukno, Federico Mateo
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.description.degree
Programa de doctorat en Tecnologies de la Informació i les Comunicacions