Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Ultra dense networks (UDNs) allow for efficient spatial reuse of the spectrum, giving rise to substantial capacity and power gains. In order to exploit those gains, tractable mathematical models need to be derived, allowing for the analysis and optimization of the network operation. In this course, stochastic geometry has emerged as a powerful tool for large-scale analysis and modeling of wireless cellular networks. In particular, the employment of stochastic geometry has been proven instrumental for the characterization of the network performance and for providing significant insights into network densification. Fundamental issues, however, remain open in order to use stochastic geometry tools for the optimization of wireless networks, with the biggest challenge being the lack of tractable closed form expressions for the derived figures of merit. To this end, the present thesis revisits stochastic geometry and provides a novel stochastic geometry framework with a twofold contribution. The first part of the thesis focuses on the derivation of simple, albeit accurate closed form approximations for the ergodic rate of Poisson cellular networks under a noise limited, an interference limited and a general case scenario. The ergodic rate constitutes the most sensible figure of merit for characterizing the system performance, but due to the inherent intractability of the available stochastic geometry frameworks, had not been formulated in closed form hitherto. To demonstrate the potential of the aforementioned tractable expressions with respect to network optimization, the present thesis proposes a flexible connectivity paradigm and employs part of the developed expressions to optimize the network connectivity. The proposed flexible connectivity paradigm exploits the downlink uplink decoupling (DUDe) configuration, which is a promising framework providing substantial capacity and outage gains in UDNs and introduces the DUDe connectivity gains into the 5G era and beyond. Subsequently, the last part of the thesis provides an analytical formulation of the probability density function (PDF) of the aggregate inter-cell interference in Poisson cellular networks. The introduced PDF is an accurate approximation of the exact PDF that could not be analytically formulated hitherto, even though it constituted a crucial tool for the analysis and optimization of cellular networks. The lack of an analytical expression for the PDF of the interference in Poisson cellular networks had imposed the use of intricate formulas, in order to derive sensible figures of merit by employing only the moment generating function (MGF). Hence, the present thesis introduces an innovative framework able to simplify the analysis of Poisson cellular networks to a great extent, while addressing fundamental issues related to network optimization and design.
Las redes ultra densas (UDNs) permiten una reutilización espacial del espectro, proporcionando ventajas en términos de mejora de capacidad y ahorro de potencia. Para explotar estas ventajas se necesitan modelos matemáticos simples que permitan el análisis y la optimización de la operación de la red. Por esta razón, la geometría estocástica se ha convertido en una potente herramienta para el análisis de redes celulares. En particular, el empleo de la geometría estocástica ha sido fundamental para la caracterización del rendimiento de la red y para proporcionar información importante sobre la densificación de la misma. Sin embargo, hay problemas fundamentales que deben resolverse para utilizar estas herramientas de geometría estocástica, siendo el mayor desafío la falta de expresiones simples de forma cerrada para las funciones objetivo de interés. Por este motivo, la presente tesis examina la geometría estocástica y proporciona un marco novedoso con una doble contribución. La primera parte de la tesis se centra en la derivación de aproximaciones cerradas simples pero ajustadas para la capacidad ergódica de las redes de Poisson en escenarios limitados por ruido, por interferencia y por ambos. La capacidad ergódica constituye la figura de mérito más apropiada para caracterizar el rendimiento del sistema, pero no se ha formulado en forma cerrada debido a la complejidad inherente de las expresiones de geometría estocástica disponibles. Para demostrar el potencial de las expresiones simples propuestas, la presente tesis propone un paradigma de conectividad flexible y utiliza parte de las expresiones desarrolladas para optimizar la conectividad de la red. El paradigma de conectividad flexible propuesto explota la configuración de "Downlink Uplink Decoupling" (DUDe), que es un marco que proporciona ventajas sustanciales en términos de incremento de capacidad y reducción de la probabilidad de bloqueo en UDNs e introduce mejoras de conectividad DUDe en la era de 5G. Más adelante, la última parte de la tesis proporciona una formulación analítica de la función de densidad de probabilidad (PDF) de la interferencia agregada en las redes celulares de Poisson. La PDF desarrollada es una aproximación precisa de la PDF exacta que hasta ahora no se ha podido formular analíticamente, a pesar de que se trata de una herramienta crucial para el análisis y la optimización de las redes celulares. La falta de una expresión analítica para la PDF de la interferencia en las redes celulares de Poisson había impuesto el uso de fórmulas complejas, a fin de derivar funciones objetivas apropiadas empleando solo la función generadora de momentos (MGF). Por lo tanto, la presente tesis presenta un marco innovador capaz de simplificar el análisis de las redes celulares de Poisson y así resolver problemas fundamentales relacionados con la optimización y el diseño de la red.
621.3 - Enginyeria elèctrica. Electrotècnia. Telecomunicacions
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació