Time domain, near-infrared diffuse optical methods for path length resolved, non-invasive measurement of deep-tissue blood flow

Autor/a

Pagliazzi, Marco

Director/a

Durduran, Turgut

Fecha de defensa

2019-10-04

Páginas

192 p.



Departamento/Instituto

Universitat Politècnica de Catalunya. Institut de Ciències Fotòniques

Resumen

The non-invasive and, often, continuous measurement of the hemodynamics of the body, and for the main purposes of this thesis, the brain, is desired because both the instantaneous values and their changes over time constantly adapt to the conditions affecting the body and its environment. They are altered in pathological situations and in response to increased function. It is desirable for these measurements to be continuous, reliable, minimally invasive, and relatively inexpensive. In recent years, optical techniques that, by using diffusing and deep-reaching (up to few centimeters) light at skin-safe levels of intensity, combine the aforementioned characteristics, have increasingly become used in clinical and research settings. However, to date there is, on one side the need to expand the number and scope of translational studies, and, on the other, to address shortcomings like the contamination of signals from unwanted tissue volumes (partial volume effects). A further important goal is to increase the depth of penetration of light without affecting the non-invasive nature of diffuse optics. My PhD was aimed at several aspects of this problem; (i) the development of new, more advanced methods, i.e. the time/pathlength resolved, to improve the differentiation between superficial and deeper tissues layers, (ii) the exploration of new application areas, i.e. to characterize the microvascular status of bones, to study the functional response of the baby brain, and (iii) to improve the quality control of the systems , i.e. by introducing a long shelf-life dynamic phantom. In conceptual order, first I introduce long shelf-life reference standards for diffuse correlation spectroscopy. Secondly, I describe the use of an existing hybrid time domain and diffuse correlation spectroscopy system to monitor the changes that some pathological conditions, in this case osteoporosis and human immunodeficiency virus infection, may have on many aspects of the human bone tissue that are currently not easy to measure (i.e. invasively assessed) by conventional techniques. Thirdly, I describe the development of a novel time domain optical technique that intimately combines, introducing many previously unmet advancements, the two previously cited optical spectroscopy techniques. For the first time I was able to produce a time domain device and protocol that can monitor the blood flow in vivo in the head and muscles of healthy humans. Lastly, I describe a device and method that I have used to monitor changes in blood flow in healthy human infants of three to five months of age, for the first time in this age bracket, as a marker of activation following visual stimulation. Overall, this work pushes the limit of the technology that makes use of diffuse light to minimally invasively, continuously, and reliably monitor endogenous markers of pathological and physiological processes in the human body.


La medición no invasiva y, a menudo, continua de la hemodinámica del cuerpo, y para los propósitos principales de esta tesis, del cerebro, es conveniente porque tanto los valores instantáneos como sus variaciones en el tiempo se adaptan constantemente a las condiciones que afectan el cuerpo humano y su entorno. Estas suelen alterarse en situaciones patológicas o como respuesta a una mayor función. Es deseable que estas mediciones sean continuas, confiables, mínimamente invasivas y relativamente asequibles. En los últimos años, las técnicas ópticas que, mediante el uso de luz difusa para medir los tejidos en profundidad (hasta unos pocos centímetros) mediante niveles de intensidad que son seguros para la piel, combinan las características arriba mencionadas, se han utilizado cada vez más tanto en entornos clínicos como de investigación. Sin embargo, al día de hoy hay, por un lado, la necesidad de ampliar el número y el ámbito de los estudios translacionales y, por el otro, de suplir a las deficiencias como por ejemplo la contaminación de volúmenes de tejido no deseados (efectos de volumen parcial). Otro objetivo importante es aumentar la profundidad de penetración de la luz sin afectar la naturaleza no invasiva de la óptica difusa. Mi doctorado está destinado a mejorar varios aspectos de este problema; (i) el desarrollo de nuevos métodos más avanzados, es decir, el método resuelto en el tiempo/trayectoria de los fotones, para mejorar la diferenciación entre los tejidos superficiales y profundos, (ii) la exploración de nuevas áreas de aplicación, es decir, para caracterizar el estado microvascular de los huesos, para estudiar la respuesta funcional del cerebro en los niños, y (iii) para mejorar el control de calidad de los sistemas, es decir, mediante la introducción de un phantom dinámico de larga vida útil. En orden conceptual, primero voy a introducir estándares de referencia de larga vida útil para la espectroscopia de correlación difusa (DCS). En segundo lugar, voy a describir el uso de un sistema híbrido espectroscopia tiempo-resuelta (TRS) con DCS ya existente para monitorizar los cambios que algunas condiciones patológicas, en este caso la osteoporosis y la infección por el virus de la inmunodeficiencia humana, pueden comportar para muchos aspectos del tejido óseo humano que actualmente no se pueden medir con facilidad (es decir, se van evaluado de forma invasiva) mediante técnicas convencionales. En tercer lugar, voy a describir el desarrollo de una novedosa técnica óptica en el dominio temporal que combina íntimamente, introduciendo muchos avances previamente no cumplidos, TRS y DCS. Por primera vez pude producir un dispositivo y un protocolo tiempo-resueltos para medir el flujo de la sangre en la cabeza y en los músculos de seres humanos sanos. Por último, en esta tesis voy a describir un dispositivo y un método que he usado para monitorear los cambios en el flujo sanguíneo como marcadores de activación del cerebro debida a estímulos visivos en bebés entre tres y cinco meses de edad. En general, este trabajo amplia los limites de la tecnología que hace uso de la luz difusa para monitorizar, de forma mínimamente invasiva, continua y confiable los marcadores endógenos de procesos patológicos y fisiológicos en el cuerpo humano.

Materias

535 - Óptica; 616.8 - Neurología. Neuropatología. Sistema nervioso; 68 - Industrias, oficios y comercio de artículos acabados. Tecnología cibernética y automática

Área de conocimiento

Àrees temàtiques de la UPC::Física

Documentos

TMP1de1.pdf

10.42Mb

 

Derechos

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)