New epoxy composites with enhanced thermal conductivity keeping electrical insulation

Autor/a

Isarn Garcia, Isaac

Director/a

Ferrando Piera, Francesc

Serra Albet, Maria Àngels

Fecha de defensa

2019-10-11

Páginas

215 p.



Departamento/Instituto

Universitat Rovira i Virgili. Departament d'Enginyeria Mecànica

Resumen

La tendència creixent a la indústria electrònica de fer aparells cada vegada més petits, més lleugers i que treballin més ràpid provoca un augment de calor generat per efecte Joule, degut a l’augment de freqüència del pas d’electrons. Eliminar aquest excés de calor requereix la millora de la conductivitat tèrmica dels materials ja existents, ja que el mantenir la temperatura de treball d’aquests dispositius està directament relacionat amb l’eficiència, el temps de vida útil i la prevenció de fallades prematures dels equips. Alguns elements dels dispositius electrònics es recobreixen amb reïnes termoestables epoxídiques. Per aquesta raó, augmentar la conductivitat tèrmica d’aquestes reïnes, aïllants per naturalesa, mantenint l’aïllament elèctric, resulta de gran importància en diverses indústries com l’electrònica i l’elèctrica. El mètode més senzill i econòmic per assolir aquest propòsit és mitjançant l’addició de partícules a la matriu polimèrica. En aquesta tesis doctoral s’han utilitzat diferents tipus de partícules per aconseguir els objectius en diverses matrius epoxídiques: nitrur de bor (BN), alúmina (Al2O3), nitrur d’alumini (AlN), carbur de silici (SiC), grafit expandit (EG) i nanotubs de carboni (CNTs). Experimentalment, s’ha determinat la influència que cada material afegit té sobre les propietats finals dels materials compostos, especialment de les característiques mecàniques, tèrmiques i elèctriques. El millor resultat obtingut pels objectius proposats ha estat la combinació del 70 % en pes de BN i un 2.5 i 5 % en pes de EG, arribant a més d’un 1600 % de millora en conductivitat tèrmica respecte el material de partida. Les conductivitats tèrmiques obtingudes han estat de 2,08 i 2,22 W/m·K, respectivament. A més, aquests materials han mantingut resistivitats elèctriques prou bones, al voltant de 10^10 i 10^6 Ω·m respectivament.


La tendencia de la industria electrónica de crear dispositivos cada vez más pequeños, más ligeros y que trabajen más rápido lleva a un aumento en la producción de calor generado por efecto Joule, debido al aumento de la frecuencia de paso de los electrones. Eliminar este exceso de calor lleva a la necesidad de mejorar la conductividad térmica de los materiales ya existentes, ya que limitar la temperatura de trabajo de los dispositivos está directamente relacionada con su eficiencia, su tiempo de vida útil y previene la aparición de fallos prematuros de los equipos. Algunos elementos de estos dispositivos están recubiertos de resina termoestable epoxídica. Por esta razón, aumentar la conductividad térmica de estas resinas, aislantes por naturaleza, resulta de gran importancia en varias industrias como la electrónica y la eléctrica. El método más simple y económico para alcanzar este propósito es mediante la adición de partículas a la matriz polimérica. En esta tesis doctoral se han utilizado diferentes tipos de partículas en varias matrices epoxídicas: nitruro de boro (BN), alúmina (Al2O3), nitruro de aluminio (AlN), carburo de silicio (SiC), grafito expandido (EG) y nanotubos de carbono (CNTs). Se ha determinado experimentalmente la influencia de cada material añadido en las propiedades finales de los materiales compuestos, especialmente en sus características mecánicas, térmicas y eléctricas. El mejor resultado obtenido en cuanto a los objetivos propuestos ha sido la combinación del 70 % en peso de BN y un 2.5 y 5 % en peso de EG, alcanzando más de un 1600 % de mejora en conductividad térmica respecto al material de partida. Las conductividades térmicas alcanzadas han sido de 2,08 y 2,22 W/m·K respectivamente. Además, estos materiales han mantenido unas resistividades eléctricas suficientes, alrededor de 10^10 y 10^6 Ω·m, respectivamente.


The tendency in electronics to produce smaller and lighter devices with higher power output causes an increase of the generated heat (Joule effect) by the increase in the frequency of electrons. Evolve this exceeding heat cause the need to improve some properties that existent materials do not meet, since keeping the working temperature of these devices is directly related to efficiency, useful lifetime and prevention of premature equipment failures. Some elements of these devices are coated by epoxy resins and this is the reason why enhance the thermal conductivity of them, insulators by nature, is of great importance in several industries such as electronics and electrical. The most economic and simple technique to face this issue is still today through the addition of high thermal conductive fillers. In this doctoral thesis, boron nitride (BN), alumina (Al2O3), aluminum nitride (AlN), silicon carbide (SiC), expanded graphite (EG) and carbon nanotubes (CNTs) have been used. Experimentally, the influence of each filler has been determined in the final composites, especially in the thermal, mechanic and electric characteristics. The materials with the best performances in the proposed objectives were those of homopolymerized cycloaliphatic epoxy resin with the combined addition of 70 wt. % of BN platelets and 2.5 and 5 wt. % of EG. The values of thermal conductivity improved by more than 1600 % in reference to the neat epoxy and were 2.08 and 2.22 W/m·K, respectively. These materials also kept enough electrical insulation, in the range of 10^10 and 10^6 Ω·m, respectively.

Palabras clave

Reïnes epoxídiques; Conductivitat tèrmica; Compostos polimèrics; Resinas epoxi; Conductividad térmica; Compuestos poliméricos; Epoxy resins; Thermal conductivity; Polymer composites

Materias

536 - Calor. Termodinámica; 547 - Química orgánica

Área de conocimiento

Ciències

Documentos

TESI.pdf

10.78Mb

 

Derechos

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Este ítem aparece en la(s) siguiente(s) colección(ones)