Optimization methods for the design of progressive lenses

Author

Casanellas, Glòria

Director

Castro, Jordi

Date of defense

2020-03-05

Pages

135 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa

Abstract

This work is the result of an Industrial Doctorate developed through a partnership agreement between the Universitat Politècnica de Catalunya and the company Horizons Optical. This thesis solves the complex design of progressive lenses for eyeglasses, which is a real problem in the industry. The lens is the transparent part of the eye behind the pupil that helps humans to see clearly by focusing light onto the retina. Over time, the lens loses some of its elasticity and therefore can no longer accommodate clearly for near vision. This phenomenon is called presbyopia and explains why people need reading glasses as they become older. Progressive lenses correct presbyopia and have a complex design: they have an upper region for far vision, a low region for near vision (reading), and a corridor that connects these areas which allows clearly vision at an intermediate distance, for example, when looking at a computer screen. The surface of the progressive lens designed in this thesis is the surface that is farthest from the eye, thus the power in the near region is bigger than the power in the far region. In geometrical terms, power and astigmatism are calculated using the principal curvatures of the lens surface. When the power changes vertically, unwanted lateral astigmatism (aberrations) appear as a result of the Minkwitz theorem. The focus of this thesis is the use of optimization methods in order to design progressive lenses minimizing the lateral aberrations (astigmatism) and providing the power required in each zone. This thesis presents two different models for computing progressive lens. Both models are highly nonlinear, nonconvex and continuous and were solved using the AMPL modeling language and the interior point solvers IPOPT, LOQO and KNITRO. Both models have approximately 900 variables (the coefficients of a third-degree B-spline basis). The first model has about 7000 constraints, while the second model has about 15000 constraints. Each constraint corresponds to a property of power or astigmatism at a point on the grid that defines the lens surface. The first model uses Cartesian coordinates and is an improved version of a previous model by the same author, published in a master's thesis. The CPU time in the master thesis was between 10 and 33 minutes, and in this thesis it has been reduced to less than 3 minutes using the same machine and the LOQO solver. In this thesis, all of the proposed instances converged using the LOQO solver and the Cartesian coordinate model, which was not the case in the master's thesis. However, with other solvers some of the instances did not converge using the Cartesian coordinate model of this thesis. The second model uses spherical coordinates and exhibits better convexity properties than the previous one based on Cartesian coordinates. All of the problem instances converged using all the proposed solvers, and the quality of the solution was improved. CPU time for spherical coordinates increased in relation to the Cartesian coordinate model, due to large calculations involved, but the number of iterations needed to converge decreased considerably (for example, from a maximum of 192 iterations using the Cartesian coordinate model to a maximum of 84 iterations using the spherical coordinate model and the same LOQO solver). These models resulted in two publications. The first one is a patent for an invention that uses the Cartesian coordinate model and orients the astigmatism gradient, which is useful when personalizing progressive lenses for real users. The second publication is a scientific article published in Optimization and Engineering that proposes the spherical coordinate model.


Aquest document és el resultat d'un Doctorat Industrial desenvolupat a través d'un acord entre la Universitat Politècnica de Catalunya i l'empresa Horizons Optical. Aquesta tesi resol el disseny complex de les lents progressives per ulleres, que és un problema real de la indústria. El cristal·lí és la part transparent de l'ull, situada darrera la pupil·la, que ens permet veure-hi nítidament enfocant la llum a la retina. Amb el pas del temps, el cristal·lí perd la seva elasticitat i disminueix la seva capacitat d'acomodació a la visió de prop. Aquest fenomen s'anomena presbícia i explica per què necessitem ulleres quan ens fem grans. Les lents progressives corregeixen la presbícia i tenen un disseny complex: la zona superior s'utilitza per a la visió de lluny, la zona inferior per a la visió de prop (lectura) i el corredor que connecta aquestes dues zones permet una visió nítida per a distàncies intermèdies, per exemple per a mirar la pantalla d'un ordinador. La superfície de la lent progressiva dissenyada en aquesta tesi és la superfície més distant de l'ull, és a dir, la potència de la zona de prop és més gran que la potència de la zona de lluny. En termes geomètrics, la potència i l'astigmatisme es calculen utilitzant les curvatures principals de la superfície de la lent. En augmentar la potència verticalment, apareixen aberracions laterals en forma d'astigmatisme com a conseqüència del teorema de Minkwitz. L'objectiu d'aquesta tesi és utilitzar mètodes d'optimització per a dissenyar lents progressives minimitzant les aberracions laterals (astigmatisme) i proporcionant la potència demanada per a cada zona de la lent. Aquesta tesi presenta dos models diferents per a calcular lents progressives. Tots dos models són altament no lineals, no convexos i continus i han estat resolts utilitzant el llenguatge de modelització AMPL i els solvers de punt interior IPOPT, LOQO i KNITRO. Tots dos models tenen aproximadament 900 variables (les variables són els coeficients d'una base de B-splines de grau tres). El primer model té unes 7000 restriccions, mentre que el segon model té unes 15000 restriccions. Cada restricció correspon a una propietat de potència o astigmatisme d'un punt de la malla que defineix la superfície de la lent. El primer model utilitza coordenades cartesianes i és una versió millorada d'un model previ de la mateixa autora, publicat en un treball final de màster. El temps de CPU en el treball final de màster era entre 10 i 33 minuts, i en aquesta tesi s'ha reduït a menys de 3 minuts utilitzant el mateix ordinador i el solver LOQO. En aquesta tesi, totes les instàncies han convergit utilitzant el solver LOQO i el model amb coordenades cartesianes, la qual cosa no passava en el treball final de màster. Tanmateix, en aquesta tesi algunes de les instàncies no han convergit utilitzant el model amb coordenades cartesianes i altres solvers. El segon model utilitza coordenades esfèriques i presenta millor convexitat que l'anterior model de coordenades cartesianes. Totes les instàncies han convergit utilitzant qualsevol dels solvers, i la qualitat de la solució ha millorat. El temps de CPU utilitzant coordenades esfèriques ha estat superior que el temps del model de coordenades cartesianes, a causa dels llargs càlculs, tot i que el nombre d'iteracions ha disminuït considerablement (per exemple, d'un màxim de 192 iteracions utilitzant coordenades cartesianes a un màxim de 84 iteracions utilitzant coordenades esfèriques i el mateix solver LOQO). Aquests dos models han tingut com a resultat dues publicacions. La primera és la patent d'invenció que utilitza coordenades cartesianes i orienta el gradient d'astigmatisme, la qual cosa és útil a l'hora de personalitzar les lents progressives per als usuaris finals. La segona publicació és un article científic publicat a la revista Optimization and Engineering, que presenta el model amb coordenades esfèriques.

Subjects

51 - Mathematics; 535 - Optics

Knowledge Area

Àrees temàtiques de la UPC::Matemàtiques i estadística

Documents

TGCP1de1.pdf

5.962Mb

 

Rights

ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)