dc.contributor
Universitat Autònoma de Barcelona. Departament de Matemàtiques
dc.contributor.author
Levi, Matteo
dc.date.accessioned
2020-09-02T07:29:08Z
dc.date.available
2020-09-02T07:29:08Z
dc.date.issued
2019-12-13
dc.identifier.isbn
9788449090769
en_US
dc.identifier.uri
http://hdl.handle.net/10803/669408
dc.description.abstract
In this thesis we study some fine properties of sets in the boundary of continuous and discrete
metric spaces. On the discrete side, we consider a Potential Theory on infinite trees. Using
probabilistic methods, we derive a description of the set of irregular points for the Dirichlet
problem on the tree. In particular, we obtain a Wiener's type test and we show that the set
of irregular points has zero capacity. We also discuss some uniqueness results for the solution
of the Dirichlet problem in some energy spaces. Then, we provide an equilibrium equation
characterizing measures that realize a p–capacity on the natural boundary of the tree and we
discuss a quite surprising application to the classical problem of tiling a rectangle with squares.
In the continuous setting, we study metric distortion properties of sets in unit circle under
the action of inner functions. Classical results by Löowner and by Fernández-Pestana describe
this distortion in terms of Lebesgue measure and Hausdorff content respectively, for inner
functions having the Denjoy-Wolff point in the unit disc. We present an extended theorem
of the same kind which applies also to inner functions with no fixed points in the unit disc.
In this situation, the distortion properties are given in terms of a natural (infinite) measure
which provides at the same time information on the size and on the distribution of a set around
the Denjoy-Wolff point. As an application of our result we derive an estimate of the size of
the omitted values of an inner functions in terms of the size of points in the unit circle not
admitting a finite angular derivative. Using our result we are also able to prove a version of
Löwner and Fernández-Pestana theorems for inner functions of the upper half plane fixing the
point at infinity.
en_US
dc.format.extent
83 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Autònoma de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Discrete potential
en_US
dc.subject
Dirichlet problem
en_US
dc.subject
Inner functions
en_US
dc.subject.other
Ciències Experimentals
en_US
dc.title
Fine boundary properties in complex analysis and discrete potential theory
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.authoremail
m.l.matteolevi@gmail.com
en_US
dc.contributor.director
Arcozzi, Nicola
dc.contributor.director
Nicolau, Artur
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess