Exploring quantum many-body systems from an entanglement and nonlocality perspective

Autor/a

Aloy López, Albert

Director/a

Lewenstein, Maciej

Fecha de defensa

2020-07-16

Páginas

293 p.



Departamento/Instituto

Universitat Politècnica de Catalunya. Institut de Ciències Fotòniques

Resumen

Entanglement and non-local correlations give rise to unprecedented phenomena with no classical analogue. As a result, they have settled themselves as fundamental properties in the study of quantum many-body systems, as well as key resources for emerging quantum technologies. However, the lack for general and efficient criteria to characterize them in many-body systems poses many challenges, often intractable. Consequently, despite the growing interest in their properties, the role of entanglement and non-local correlations in many-body systems remains largely unexplored. The subject of the present Thesis is to explore quantum many-body systems from an entanglement and non-local correlations perspective, aiming at expanding the interplay between quantum information processing and quantum many-body physics. We examine adequate properties, like symmetries, that allow us to delve into entanglement and non-local correlations in many-body systems of physical relevance. The original results that we present are achieved at the fundamental level, even though many practical methods that can be experimentally implemented stem from them. First, we explore the complexity to characterize entanglement in simplified cases. In particular, we consider the separability problem for diagonal symmetric states. We establish a connection with the field of quadratic conic optimization that allows us to provide significant sufficient criteria. Furthermore, it allows us to prove that obtaining necessary and sufficient criteria remains an NP-hard problem, even for a case with such a simplified structure. Second, the elusiveness of the characterization of entanglement motivates certification criteria for its detection, specially in the multipartite scenario. By means of non-local correlations, we provide device-independent certification criteria that characterizes the amount of entanglement present on a quantum many-body system. This type of certification does not rely on assumptions about the internal workings of the measuring device nor about the system itself. Moreover, by relying solely on non-local correlations, the criteria dismisses all the correlations that have a classical analogue, thus being a natural candidate as a certifier for emerging quantum technologies. Third, we explore non-local correlations in the vicinity of quantum critical points, which are known to stabilize large-scale entanglement. We show the presence of non-local correlations across the phase diagram via a certain Bell inequality. Furthermore, we show that the Bell inequality is maximally violated at the quantum critical point, hinting at a possible connection between many-body Bell correlators and quantum phase transitions. Fourth, we present a solution to the quantum marginal problem restricted to symmetric states. This allows to partially circumvent the inefficient representability inherent to the multipartite Hilbert space in cases of interest. In addition, we illustrate some of the applications that our solution brings on central quantum information problems. Namely, (i) as an undemanding and efficient variational method to optimize local Hamiltonians over symmetric states, (ii) to optimize few-body symmetric Bell inequalities over symmetric states and (iii) to explore which symmetric states cannot be self-tested solely from their marginals. Finally, we conclude by presenting a methodology to derive two-body symmetric Bell inequalities for three-outcomes. These novel Bell inequalities are natural candidates to explore the role of non-local correlations on quantum phenomena tailored to qutrit or spin-1 many-body systems. We select a particular Bell inequality to characterize and show that it reveals non-local correlations in the ground state of many-body Hamiltonians physically relevant to, e.g., nuclear physics.


: L'entrellaçament i les correlacions no-locals donen lloc a fenòmens sense precedents ni analogia clàssica. Aquests fenòmens els han portat a establir-se com a propietats primordials per a l'estudi de sistemes quàntics amb molts cossos, així com a recursos primordials per a les tecnologies quàntiques emergents. Tanmateix, la manca de criteris generals i eficients per caracteritzar-los en sistemes de molts cossos suposa molts reptes, sovint intractables. Per consegüent, tot i l'interès creixent en les seves propietats, el rol de l'entrellaçament i les correlacions no-locals en sistemes de molts cossos continuen, en gran part, inexplorats. L'objectiu d'aquesta Tesi és explorar sistemes quàntics de molts cossos des de la perspectiva de l'entrellaçament i les correlacions no-locals, amb la voluntat d'ampliar la reciprocitat entre els camps del processament d'informació quàntica i la física quàntica de molts cossos. Examinem propietats adequades, com ara simetries, que ens permeten investigar l'entrellaçament i les correlacions no-locals en sistemes de molts cossos i d'interès físic. Els resultats originals que presentem s'obtenen en l'àmbit fonamental, al mateix temps que es proposen un seguit de mètodes pràctics que permeten ser experimentalment implementats. En primer lloc, explorem la complexitat en caracteritzar l'entrellaça-ment inclús en casos simplificats. En particular, considerem el problema de la separabilitat en estats simètrics diagonals. Establim una connexió amb el camp d'optimització cònica quadràtica que ens permet proporcionar diversos criteris suficients de separabilitat. A més, ens permet demostrar que criteris necessaris i suficients segueixen sent un problema NP-hard, fins i tot per a un cas amb una estructura tan simplificada. En segon lloc, l'evasivitat de la caracterització de l'entrellaçament motiva criteris de certificació per a la seva detecció, especialment en l'escenari multipartit. Mitjançant correlacions no-locals, proporcionem criteris independents del dispositiu que caracteritzen la quantitat d'ent-rellaçament present en un sistema quàntic de molts cossos. Aquest tipus de certificació no es basa en suposicions sobre el funcionament intern del dispositiu de mesura ni del mateix sistema. A més, al basar-se únicament en correlacions no-locals el criteri descarta totes les correlacions que tenen un anàleg clàssic, sent així un candidat natural com a certificador de tecnologies quàntiques. En tercer lloc, explorem correlacions no-locals en l'entorn de punts crítics quàntics, coneguts per estabilitzar l'entrellaçament a gran escala. A través de desigualtats de Bell, mostrem la presència de correlacions no-locals al llarg del diagrama de fase d'un model d'espins. A més, mostrem que la desigualtat de Bell es viola màximament en el punt crític, donant indicis d'una possible connexió entre la violació de certes desigualtats de Bell i transicions de fase quàntiques. En quart lloc, presentem una solució pel problema del marginal quàntic restringit a estats simètrics. La solució ens permet eludir parcialment la ineficient representabilitat inherent a l'espai de Hilbert multipartit en casos d'interès. A més, il·lustrem algunes de les aplicacions que la solució ofereix en problemes centrals d'informació quàntica. Concretament, (i) com a mètode variacional poc exigent i eficaç que ofereix optimitzar Hamiltonians locals respecte estats simètrics, (ii) per optimitzar desigualtats de Bell de pocs cossos i simètriques respecte d'estats simètrics i (iii) per explorar quins estats simètrics no es poden auto-validar només a partir dels seus marginals. Finalment, concloem presentant una metodologia que permet obtenir desigualtats de Bell simètriques de pocs cossos amb tres possibles resultats de mesura. Aquestes noves desigualtats de Bell permeten explorar el rol de les correlacions no-locals en fenòmens quàntics específics per a sistemes de molts cossos formats per qutrits o amb àtoms d'espín-1. Seleccionem una desigualtat de Bell a caracteritzar i mostrem que detecta correlacions no-locals en l'estat fonamental d'Hamiltonians físicament rellevant en, e.g., física nuclear.


El entrelazamiento y las correlaciones no-locales dan lugar a fenómenos sin precedentes ni analogía clásica. Estos fenómenos les ha llevado a establecerse como propiedades clave para el estudio de sistemas cuánticos con muchos cuerpos, además de convertirse en recursos primordiales para las tecnologías cuánticas emergentes. Sin embargo, la falta de criterios generales y eficientes para caracterizarlos en sistemas de muchos cuerpos suponen muchos retos, a menudo intratables. Por consiguiente, a pesar del creciente interés en sus propiedades, el rol del entrelazamiento y las correlaciones no-locales en sistemas de muchos cuerpos siguen, en gran parte, inexplorados. El objetivo de esta Tesis es explorar sistemas cuánticos de muchos cuerpos desde la perspectiva del entrelazamiento y las correlaciones no-locales, con la voluntad de ampliar la sinergia entre el campo del procesamiento de información cuántica y la física cuántica de muchos cuerpos. Examinamos propiedades adecuadas, como simetrías, que nos permiten investigar el entrelazamiento y las correlaciones no-locales en sistemas de muchos cuerpos y de interés físico. Los resultados originales que presentamos se obtienen en el ámbito fundamental, al mismo tiempo que se proponen varios métodos prácticos que permiten ser experimentalmente implementados. En primer lugar, exploramos la complejidad en caracterizar el entrelazamiento en casos simplificados. En particular, consideramos el problema de la separabilidad en estados simétricos diagonales. Establecemos una conexión con el campo de la optimización cónica cuadrática que nos permite demostrar que obtener criterios necesarios y suficientes sigue siendo un problema NP-hard, incluso para un caso con una estructura tan simplificada. En segundo lugar, la evasividad de la caracterización del entrelazamiento motiva criterios de certificación para su detección, especialmente en el escenario multipartito. Mediante correlaciones no-locales, proporcionamos criterios independientes del dispositivo que certifican la cantidad de entrelazamiento presente en un sistema cuántico de muchos cuerpos. Este tipo de certificación no se basa en suposiciones sobre el funcionamiento interno del dispositivo de medida ni del mismo sistema. Además, al basarse únicamente en correlaciones no-locales, el criterio descarta todas las correlaciones que tienen un análogo clásico, siendo así un candidato natural como certificador de tecnologías cuánticas. En tercer lugar, exploramos correlaciones no-locales alrededor de puntos críticos cuánticos, de los cuáles es sabido que estabilizan el entrelazamiento a gran escala. A través de desigualdades de Bell, mostramos la presencia de correlaciones no-locales a lo largo del diagrama de fase de un modelo de espines. Además, mostramos que la desigualdad de Bell se viola máximamente en el punto crítico, dando indicios de una posible conexión entre la violación de ciertas desigualdades de Bell y transiciones de fase cuánticas. En cuarto lugar, presentamos una solución para el problema del marginal cuántico restringido a estados simétricos. La solución nos permite eludir parcialmente la ineficiente representabilidad intrínseca del espacio de Hilbert en casos de interés. Además, ilustramos algunas de las aplicaciones que la solución ofrece en problemas centrales de información cuántica. Concretamente, (i) como método variacional poco exigente y eficaz que ofrece optimizar Hamiltonianos locales respecto a estados simétricos, (ii) para optimizar desigualdades de Bell de pocos cuerpos y simétricas respecto estados simétricos y (iii) para explorar qué estados simétricos no se pueden auto-validar sólo a partir de sus marginales Finalmente, concluimos presentando una metodología que permite obtener desigualdades de Bell de pocos cuerpos y simétricas con tres posibles resultados de medida. Estas nuevas desigualdades de Bell permiten explorar el rol de las correlaciones no-locales en fenómenos cuánticos específicos para sistemas de muchos cuerpos formados por qutrits o con átomos de espín-1. Seleccionamos una desigualdad de Bell específica para caracterizar y mostramos que detecta correlaciones no-locales en el estado fundamental de Hamiltonianos físicamente relevante en, e.g., física nuclear

Materias

539 - Constitución física de la materia

Área de conocimiento

Àrees temàtiques de la UPC::Física

Documentos

TAAL1de1.pdf

4.700Mb

 

Derechos

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)