Learning to extract features for 2D – 3D multimodal registration

Autor/a

Pujol Miró, Alba

Director/a

Ruiz Hidalgo, Javier

Codirector/a

Casas Pla, Josep Ramon

Fecha de defensa

2020-09-18

Páginas

239 p.



Departamento/Instituto

Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions

Resumen

The ability to capture depth information form an scene has greatly increased in the recent years. 3D sensors, traditionally high cost and low resolution sensors, are being democratized and 3D scans of indoor and outdoor scenes are becoming more and more common. However, there is still a great data gap between the amount of captures being performed with 2D and 3D sensors. Although the 3D sensors provide more information about the scene, 2D sensors are still more accessible and widely used. This trade-off between availability and information between sensors brings us to a multimodal scenario of mixed 2D and 3D data. This thesis explores the fundamental block of this multimodal scenario: the registration between a single 2D image and a single unorganized point cloud. An unorganized 3D point cloud is the basic representation of a 3D capture. In this representation the surveyed points are represented only by their real word coordinates and, optionally, by their colour information. This simplistic representation brings multiple challenges to the registration, since most of the state of the art works leverage the existence of metadata about the scene or prior knowledges. Two different techniques are explored to perform the registration: a keypoint-based technique and an edge-based technique. The keypoint-based technique estimates the transformation by means of correspondences detected using Deep Learning, whilst the edge-based technique refines a transformation using a multimodal edge detection to establish anchor points to perform the estimation. An extensive evaluation of the proposed methodologies is performed. Albeit further research is needed to achieve adequate performances, the obtained results show the potential of the usage of deep learning techniques to learn 2D and 3D similarities. The results also show the good performance of the proposed 2D-3D iterative refinement, up to the state of the art on 3D-3D registration.


La capacitat de captar informació de profunditat d’una escena ha augmentat molt els darrers anys. Els sensors 3D, tradicionalment d’alt cost i baixa resolució, s’estan democratitzant i escànners 3D d’escents interiors i exteriors són cada vegada més comuns. Tot i això, encara hi ha una gran bretxa entre la quantitat de captures que s’estan realitzant amb sensors 2D i 3D. Tot i que els sensors 3D proporcionen més informació sobre l’escena, els sensors 2D encara són més accessibles i àmpliament utilitzats. Aquesta diferència entre la disponibilitat i la informació entre els sensors ens porta a un escenari multimodal de dades mixtes 2D i 3D. Aquesta tesi explora el bloc fonamental d’aquest escenari multimodal: el registre entre una sola imatge 2D i un sol núvol de punts no organitzat. Un núvol de punts 3D no organitzat és la representació bàsica d’una captura en 3D. En aquesta representació, els punts mesurats es representen només per les seves coordenades i, opcionalment, per la informació de color. Aquesta representació simplista aporta múltiples reptes al registre, ja que la majoria dels algoritmes aprofiten l’existència de metadades sobre l’escena o coneixements previs. Per realitzar el registre s’exploren dues tècniques diferents: una tècnica basada en punts clau i una tècnica basada en contorns. La tècnica basada en punts clau estima la transformació mitjançant correspondències detectades mitjançant Deep Learning, mentre que la tècnica basada en contorns refina una transformació mitjançant una detecció multimodal de la vora per establir punts d’ancoratge per realitzar l’estimació. Es fa una avaluació àmplia de les metodologies proposades. Tot i que es necessita més investigació per obtenir un rendiment adequat, els resultats obtinguts mostren el potencial de l’ús de tècniques d’aprenentatge profund per aprendre similituds 2D i 3D. Els resultats també mostren l’excel·lent rendiment del perfeccionament iteratiu 2D-3D proposat, similar al dels algoritmes de registre 3D-3D.


La capacidad de captar información de profundidad de una escena ha aumentado mucho en los últimos años. Los sensores 3D, tradicionalmente de alto costo y baja resolución, se están democratizando y escáneres 3D de escents interiores y exteriores son cada vez más comunes. Sin embargo, todavía hay una gran brecha entre la cantidad de capturas que se están realizando con sensores 2D y 3D. Aunque los sensores 3D proporcionan más información sobre la escena, los sensores 2D todavía son más accesibles y ampliamente utilizados. Esta diferencia entre la disponibilidad y la información entre los sensores nos lleva a un escenario multimodal de datos mixtos 2D y 3D. Esta tesis explora el bloque fundamental de este escenario multimodal: el registro entre una sola imagen 2D y una sola nube de puntos no organizado. Una nube de puntos 3D no organizado es la representación básica de una captura en 3D. En esta representación, los puntos medidos se representan sólo por sus coordenadas y, opcionalmente, por la información de color. Esta representación simplista aporta múltiples retos en el registro, ya que la mayoría de los algoritmos aprovechan la existencia de metadatos sobre la escena o conocimientos previos. Para realizar el registro se exploran dos técnicas diferentes: una técnica basada en puntos clave y una técnica basada en contornos. La técnica basada en puntos clave estima la transformación mediante correspondencias detectadas mediante Deep Learning, mientras que la técnica basada en contornos refina una transformación mediante una detección multimodal del borde para establecer puntos de anclaje para realizar la estimación. Se hace una evaluación amplia de las metodologías propuestas. Aunque se necesita más investigación para obtener un rendimiento adecuado, los resultados obtenidos muestran el potencial del uso de técnicas de aprendizaje profundo para aprender similitudes 2D y 3D. Los resultados también muestran el excelente rendimiento del perfeccionamiento iterativo 2D-3D propuesto, similar al de los algoritmos de registro 3D-3D.

Palabras clave

3D; Deep learning; Multi-domain; Feature detection

Materias

004 - Informática

Área de conocimiento

Àrees temàtiques de la UPC::Enginyeria de la telecomunicació

Documentos

TAPM1de1.pdf

12.45Mb

 

Derechos

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)