Programming models to support data science workflows

Author

Ramón-Cortés Vilarrodona, Cristián

Director

Badia Sala, Rosa M. (Rosa Maria)

Codirector

Ejarque Artigas, Jorge

Date of defense

2020-09-21

Pages

201 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors

Abstract

Data Science workflows have become a must to progress in many scientific areas such as life, health, and earth sciences. In contrast to traditional HPC workflows, they are more heterogeneous; combining binary executions, MPI simulations, multi-threaded applications, custom analysis (possibly written in Java, Python, C/C++ or R), and real-time processing. Furthermore, in the past, field experts were capable of programming and running small simulations. However, nowadays, simulations requiring hundreds or thousands of cores are widely used and, to this point, efficiently programming them becomes a challenge even for computer sciences. Thus, programming languages and models make a considerable effort to ease the programmability while maintaining acceptable performance. This thesis contributes to the adaptation of High-Performance frameworks to support the needs and challenges of Data Science workflows by extending COMPSs, a mature, general-purpose, task-based, distributed programming model. First, we enhance our prototype to orchestrate different frameworks inside a single programming model so that non-expert users can build complex workflows where some steps require highly optimised state of the art frameworks. This extension includes the @binary, @OmpSs, @MPI, @COMPSs, and @MultiNode annotations for both Java and Python workflows. Second, we integrate container technologies to enable developers to easily port, distribute, and scale their applications to distributed computing platforms. This combination provides a straightforward methodology to parallelise applications from sequential codes along with efficient image management and application deployment that ease the packaging and distribution of applications. We distinguish between static, HPC, and dynamic container management and provide representative use cases for each scenario using Docker, Singularity, and Mesos. Third, we design, implement and integrate AutoParallel, a Python module to automatically find an appropriate task-based parallelisation of affine loop nests and execute them in parallel in a distributed computing infrastructure. It is based on sequential programming and requires one single annotation (the @parallel Python decorator) so that anyone with intermediate-level programming skills can scale up an application to hundreds of cores. Finally, we propose a way to extend task-based management systems to support continuous input and output data to enable the combination of task-based workflows and dataflows (Hybrid Workflows) using one single programming model. Hence, developers can build complex Data Science workflows with different approaches depending on the requirements without the effort of combining several frameworks at the same time. Also, to illustrate the capabilities of Hybrid Workflows, we have built a Distributed Stream Library that can be easily integrated with existing task-based frameworks to provide support for dataflows. The library provides a homogeneous, generic, and simple representation of object and file streams in both Java and Python; enabling complex workflows to handle any data type without dealing directly with the streaming back-end.


Els fluxos de treball de Data Science s’han convertit en una necessitat per progressar en moltes àrees científiques com les ciències de la vida, la salut i la terra. A diferència dels fluxos de treball tradicionals per a la CAP, els fluxos de Data Science són més heterogenis; combinant l’execució de binaris, simulacions MPI, aplicacions multiprocés, anàlisi personalitzats (possiblement escrits en Java, Python, C / C ++ o R) i computacions en temps real. Mentre que en el passat els experts de cada camp eren capaços de programar i executar petites simulacions, avui dia, aquestes simulacions representen un repte fins i tot per als experts ja que requereixen centenars o milers de nuclis. Per aquesta raó, els llenguatges i models de programació actuals s’esforcen considerablement en incrementar la programabilitat mantenint un rendiment acceptable. Aquesta tesi contribueix a l’adaptació de models de programació per a la CAP per afrontar les necessitats i reptes dels fluxos de Data Science estenent COMPSs, un model de programació distribuïda madur, de propòsit general, i basat en tasques. En primer lloc, millorem el nostre prototip per orquestrar diferent programari per a que els usuaris no experts puguin crear fluxos complexos usant un únic model on alguns passos requereixin tecnologies altament optimitzades. Aquesta extensió inclou les anotacions de @binary, @OmpSs, @MPI, @COMPSs, i @MultiNode per a fluxos en Java i Python. En segon lloc, integrem tecnologies de contenidors per permetre als desenvolupadors portar, distribuir i escalar fàcilment les seves aplicacions en plataformes distribuïdes. A més d’una metodologia senzilla per a paral·lelitzar aplicacions a partir de codis seqüencials, aquesta combinació proporciona una gestió d’imatges i una implementació d’aplicacions eficients que faciliten l’empaquetat i la distribució d’aplicacions. Distingim entre la gestió de contenidors estàtica, CAP i dinàmica i proporcionem casos d’ús representatius per a cada escenari amb Docker, Singularity i Mesos. En tercer lloc, dissenyem, implementem i integrem AutoParallel, un mòdul de Python per determinar automàticament la paral·lelització basada en tasques de nius de bucles afins i executar-los en paral·lel en una infraestructura distribuïda. AutoParallel està basat en programació seqüencial, requereix una sola anotació (el decorador @parallel) i permet a un usuari intermig escalar una aplicació a centenars de nuclis. Finalment, proposem una forma d’estendre els sistemes basats en tasques per admetre dades d’entrada i sortida continus; permetent així la combinació de fluxos de treball i dades (Fluxos Híbrids) en un únic model. Conseqüentment, els desenvolupadors poden crear fluxos complexos seguint diferents patrons sense l’esforç de combinar diversos models al mateix temps. A més, per a il·lustrar les capacitats dels Fluxos Híbrids, hem creat una biblioteca (DistroStreamLib) que s’integra fàcilment amb els models basats en tasques per suportar fluxos de dades. La biblioteca proporciona una representació homogènia, genèrica i simple de seqüències contínues d’objectes i arxius en Java i Python; permetent gestionar qualsevol tipus de dades sense tractar directament amb el back-end de streaming.


Los flujos de trabajo de Data Science se han convertido en una necesidad para progresar en muchas áreas científicas como las ciencias de la vida, la salud y la tierra. A diferencia de los flujos de trabajo tradicionales para la CAP, los flujos de Data Science son más heterogéneos; combinando la ejecución de binarios, simulaciones MPI, aplicaciones multiproceso, análisis personalizados (posiblemente escritos en Java, Python, C/C++ o R) y computaciones en tiempo real. Mientras que en el pasado los expertos de cada campo eran capaces de programar y ejecutar pequeñas simulaciones, hoy en día, estas simulaciones representan un desafío incluso para los expertos ya que requieren cientos o miles de núcleos. Por esta razón, los lenguajes y modelos de programación actuales se esfuerzan considerablemente en incrementar la programabilidad manteniendo un rendimiento aceptable. Esta tesis contribuye a la adaptación de modelos de programación para la CAP para afrontar las necesidades y desafíos de los flujos de Data Science extendiendo COMPSs, un modelo de programación distribuida maduro, de propósito general, y basado en tareas. En primer lugar, mejoramos nuestro prototipo para orquestar diferentes software para que los usuarios no expertos puedan crear flujos complejos usando un único modelo donde algunos pasos requieran tecnologías altamente optimizadas. Esta extensión incluye las anotaciones de @binary, @OmpSs, @MPI, @COMPSs, y @MultiNode para flujos en Java y Python. En segundo lugar, integramos tecnologías de contenedores para permitir a los desarrolladores portar, distribuir y escalar fácilmente sus aplicaciones en plataformas distribuidas. Además de una metodología sencilla para paralelizar aplicaciones a partir de códigos secuenciales, esta combinación proporciona una gestión de imágenes y una implementación de aplicaciones eficientes que facilitan el empaquetado y la distribución de aplicaciones. Distinguimos entre gestión de contenedores estática, CAP y dinámica y proporcionamos casos de uso representativos para cada escenario con Docker, Singularity y Mesos. En tercer lugar, diseñamos, implementamos e integramos AutoParallel, un módulo de Python para determinar automáticamente la paralelización basada en tareas de nidos de bucles afines y ejecutarlos en paralelo en una infraestructura distribuida. AutoParallel está basado en programación secuencial, requiere una sola anotación (el decorador @parallel) y permite a un usuario intermedio escalar una aplicación a cientos de núcleos. Finalmente, proponemos una forma de extender los sistemas basados en tareas para admitir datos de entrada y salida continuos; permitiendo así la combinación de flujos de trabajo y datos (Flujos Híbridos) en un único modelo. Consecuentemente, los desarrolladores pueden crear flujos complejos siguiendo diferentes patrones sin el esfuerzo de combinar varios modelos al mismo tiempo. Además, para ilustrar las capacidades de los Flujos Híbridos, hemos creado una biblioteca (DistroStreamLib) que se integra fácilmente a los modelos basados en tareas para soportar flujos de datos. La biblioteca proporciona una representación homogénea, genérica y simple de secuencias continuas de objetos y archivos en Java y Python; permitiendo manejar cualquier tipo de datos sin tratar directamente con el back-end de streaming.

Keywords

Distributed computing; High-performance computing; Data science pipelines; Task-ba workflows; Dataflows; Containers (Computer sicience); COMPSs; PyCOMPSs; AutoParallel; Docker

Subjects

004 - Computer science

Knowledge Area

Àrees temàtiques de la UPC::Informàtica

Documents

TCR-CV1de1.pdf

7.402Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/

This item appears in the following Collection(s)