Universitat de Barcelona. Facultat de Matemàtiques
En esta memoria, nos proponemos dar alguna contribución al estudio de la aritmética de las extensiones de cuerpos, de números, galoisianas, no abelianas, cuyo grupo de Galois G sea de uno de los tipos siguientes: diedral de orden 2p(n) (p primo impar), diedral de orden 2pq (p, q primos impares). En el primer capitulo se considera un tipo especial de ideales llamados invariantes, y que coinciden con los que Ullom llama ambiguos, en el caso de extensiones de Q diedrales de orden 2p, y se da una condición suficiente de existencia de bases normales para dichos ideales. El capítulo segundo está destinado al estudio de ramificaciones y cálculo de discriminantes en el caso 2p(n). En los capítulos tercero y cuarto se estudia el anillo de los enteros A(subN) de la extensión N, considerado como A[G]-módulo, siendo A el anillo de Dedekind sobre cuyo cuerpo de fracciones X se construye la extensión N de grupo de Galois G de orden 2p(n) y se dan algunas condiciones suficientes para que A(subN) sea A[G]-módulo libre. En el capitulo quinto se estudia la ramificación y se calculan discriminantes en el caso de una extensión diedral de orden 2pq, y se dan condiciones suficientes para que A(subN) sea A[G]-proyectivo.
Àlgebra; Álgebra; Algebra
512 - Àlgebra
Ciències Experimentals i Matemàtiques
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.